Properties

Label 2304.4.a.by
Level $2304$
Weight $4$
Character orbit 2304.a
Self dual yes
Analytic conductor $135.940$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2304.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(135.940400653\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.9792.1
Defining polynomial: \(x^{4} - 2 x^{3} - 7 x^{2} + 2 x + 7\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 384)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{5} + ( -\beta_{1} + \beta_{3} ) q^{7} +O(q^{10})\) \( q + \beta_{1} q^{5} + ( -\beta_{1} + \beta_{3} ) q^{7} + ( -12 - \beta_{2} ) q^{11} + 3 \beta_{3} q^{13} + ( -30 - 3 \beta_{2} ) q^{17} + ( 12 - 3 \beta_{2} ) q^{19} + ( 6 \beta_{1} + 6 \beta_{3} ) q^{23} + ( 43 - 6 \beta_{2} ) q^{25} + ( 3 \beta_{1} + 6 \beta_{3} ) q^{29} + ( -13 \beta_{1} + \beta_{3} ) q^{31} + ( -120 - 3 \beta_{2} ) q^{35} + ( 18 \beta_{1} - 3 \beta_{3} ) q^{37} + ( -102 + 15 \beta_{2} ) q^{41} + ( 132 + 3 \beta_{2} ) q^{43} + ( -30 \beta_{1} + 6 \beta_{3} ) q^{47} + ( 209 + 24 \beta_{2} ) q^{49} + ( 11 \beta_{1} + 6 \beta_{3} ) q^{53} + ( 4 \beta_{1} + 8 \beta_{3} ) q^{55} + ( -468 + 16 \beta_{2} ) q^{59} + ( 54 \beta_{1} - 15 \beta_{3} ) q^{61} + ( 144 - 27 \beta_{2} ) q^{65} + ( 588 - 12 \beta_{2} ) q^{67} + ( -54 \beta_{1} + 18 \beta_{3} ) q^{71} + ( 242 - 24 \beta_{2} ) q^{73} + ( 28 \beta_{1} - 36 \beta_{3} ) q^{77} + ( 51 \beta_{1} + 9 \beta_{3} ) q^{79} + ( -852 - 17 \beta_{2} ) q^{83} + ( 18 \beta_{1} + 24 \beta_{3} ) q^{85} + ( 918 + 18 \beta_{2} ) q^{89} + ( 1296 + 63 \beta_{2} ) q^{91} + ( 60 \beta_{1} + 24 \beta_{3} ) q^{95} + ( -370 - 6 \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + O(q^{10}) \) \( 4 q - 48 q^{11} - 120 q^{17} + 48 q^{19} + 172 q^{25} - 480 q^{35} - 408 q^{41} + 528 q^{43} + 836 q^{49} - 1872 q^{59} + 576 q^{65} + 2352 q^{67} + 968 q^{73} - 3408 q^{83} + 3672 q^{89} + 5184 q^{91} - 1480 q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{3} - 7 x^{2} + 2 x + 7\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( -2 \nu^{3} + 10 \nu^{2} - 6 \nu - 20 \)
\(\beta_{2}\)\(=\)\( 16 \nu^{3} - 48 \nu^{2} - 48 \nu + 64 \)
\(\beta_{3}\)\(=\)\( -12 \nu^{3} + 44 \nu^{2} + 28 \nu - 80 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(2 \beta_{3} + \beta_{2} - 4 \beta_{1} + 16\)\()/32\)
\(\nu^{2}\)\(=\)\((\)\(3 \beta_{3} + 2 \beta_{2} - 2 \beta_{1} + 72\)\()/16\)
\(\nu^{3}\)\(=\)\((\)\(24 \beta_{3} + 17 \beta_{2} - 24 \beta_{1} + 352\)\()/32\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.06909
3.63019
−1.21597
−1.48330
0 0 0 −17.4288 0 2.99032 0 0 0
1.2 0 0 0 −5.67763 0 33.0917 0 0 0
1.3 0 0 0 5.67763 0 −33.0917 0 0 0
1.4 0 0 0 17.4288 0 −2.99032 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.4.a.by 4
3.b odd 2 1 768.4.a.v 4
4.b odd 2 1 2304.4.a.cb 4
8.b even 2 1 2304.4.a.cb 4
8.d odd 2 1 inner 2304.4.a.by 4
12.b even 2 1 768.4.a.u 4
16.e even 4 2 1152.4.d.p 8
16.f odd 4 2 1152.4.d.p 8
24.f even 2 1 768.4.a.v 4
24.h odd 2 1 768.4.a.u 4
48.i odd 4 2 384.4.d.f 8
48.k even 4 2 384.4.d.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.d.f 8 48.i odd 4 2
384.4.d.f 8 48.k even 4 2
768.4.a.u 4 12.b even 2 1
768.4.a.u 4 24.h odd 2 1
768.4.a.v 4 3.b odd 2 1
768.4.a.v 4 24.f even 2 1
1152.4.d.p 8 16.e even 4 2
1152.4.d.p 8 16.f odd 4 2
2304.4.a.by 4 1.a even 1 1 trivial
2304.4.a.by 4 8.d odd 2 1 inner
2304.4.a.cb 4 4.b odd 2 1
2304.4.a.cb 4 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2304))\):

\( T_{5}^{4} - 336 T_{5}^{2} + 9792 \)
\( T_{7}^{4} - 1104 T_{7}^{2} + 9792 \)
\( T_{11}^{2} + 24 T_{11} - 368 \)
\( T_{13}^{4} - 8640 T_{13}^{2} + 12690432 \)
\( T_{17}^{2} + 60 T_{17} - 3708 \)
\( T_{19}^{2} - 24 T_{19} - 4464 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 9792 - 336 T^{2} + T^{4} \)
$7$ \( 9792 - 1104 T^{2} + T^{4} \)
$11$ \( ( -368 + 24 T + T^{2} )^{2} \)
$13$ \( 12690432 - 8640 T^{2} + T^{4} \)
$17$ \( ( -3708 + 60 T + T^{2} )^{2} \)
$19$ \( ( -4464 - 24 T + T^{2} )^{2} \)
$23$ \( 621831168 - 53568 T^{2} + T^{4} \)
$29$ \( 419577408 - 41040 T^{2} + T^{4} \)
$31$ \( 461095488 - 55248 T^{2} + T^{4} \)
$37$ \( 2487324672 - 107136 T^{2} + T^{4} \)
$41$ \( ( -104796 + 204 T + T^{2} )^{2} \)
$43$ \( ( 12816 - 264 T + T^{2} )^{2} \)
$47$ \( 21332616192 - 302400 T^{2} + T^{4} \)
$53$ \( 806557248 - 87888 T^{2} + T^{4} \)
$59$ \( ( 87952 + 936 T + T^{2} )^{2} \)
$61$ \( 270509248512 - 1040256 T^{2} + T^{4} \)
$67$ \( ( 272016 - 1176 T + T^{2} )^{2} \)
$71$ \( 297070322688 - 1104192 T^{2} + T^{4} \)
$73$ \( ( -236348 - 484 T + T^{2} )^{2} \)
$79$ \( 1904357952 - 1039824 T^{2} + T^{4} \)
$83$ \( ( 577936 + 1704 T + T^{2} )^{2} \)
$89$ \( ( 676836 - 1836 T + T^{2} )^{2} \)
$97$ \( ( 118468 + 740 T + T^{2} )^{2} \)
show more
show less