Properties

Label 2304.4.a.bh
Level $2304$
Weight $4$
Character orbit 2304.a
Self dual yes
Analytic conductor $135.940$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2304.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(135.940400653\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 384)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + 5 \beta q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{5} + 5 \beta q^{7} + 20 q^{11} - 14 \beta q^{13} + 34 q^{17} - 52 q^{19} - 22 \beta q^{23} - 117 q^{25} + 71 \beta q^{29} - 39 \beta q^{31} + 40 q^{35} + 96 \beta q^{37} + 26 q^{41} - 252 q^{43} - 122 \beta q^{47} - 143 q^{49} - 241 \beta q^{53} + 20 \beta q^{55} + 364 q^{59} - 260 \beta q^{61} - 112 q^{65} - 628 q^{67} + 118 \beta q^{71} + 338 q^{73} + 100 \beta q^{77} - 279 \beta q^{79} + 1036 q^{83} + 34 \beta q^{85} - 234 q^{89} - 560 q^{91} - 52 \beta q^{95} - 178 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 40 q^{11} + 68 q^{17} - 104 q^{19} - 234 q^{25} + 80 q^{35} + 52 q^{41} - 504 q^{43} - 286 q^{49} + 728 q^{59} - 224 q^{65} - 1256 q^{67} + 676 q^{73} + 2072 q^{83} - 468 q^{89} - 1120 q^{91} - 356 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −2.82843 0 −14.1421 0 0 0
1.2 0 0 0 2.82843 0 14.1421 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.4.a.bh 2
3.b odd 2 1 768.4.a.m 2
4.b odd 2 1 2304.4.a.bb 2
8.b even 2 1 2304.4.a.bb 2
8.d odd 2 1 inner 2304.4.a.bh 2
12.b even 2 1 768.4.a.h 2
16.e even 4 2 1152.4.d.n 4
16.f odd 4 2 1152.4.d.n 4
24.f even 2 1 768.4.a.m 2
24.h odd 2 1 768.4.a.h 2
48.i odd 4 2 384.4.d.d 4
48.k even 4 2 384.4.d.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.d.d 4 48.i odd 4 2
384.4.d.d 4 48.k even 4 2
768.4.a.h 2 12.b even 2 1
768.4.a.h 2 24.h odd 2 1
768.4.a.m 2 3.b odd 2 1
768.4.a.m 2 24.f even 2 1
1152.4.d.n 4 16.e even 4 2
1152.4.d.n 4 16.f odd 4 2
2304.4.a.bb 2 4.b odd 2 1
2304.4.a.bb 2 8.b even 2 1
2304.4.a.bh 2 1.a even 1 1 trivial
2304.4.a.bh 2 8.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2304))\):

\( T_{5}^{2} - 8 \) Copy content Toggle raw display
\( T_{7}^{2} - 200 \) Copy content Toggle raw display
\( T_{11} - 20 \) Copy content Toggle raw display
\( T_{13}^{2} - 1568 \) Copy content Toggle raw display
\( T_{17} - 34 \) Copy content Toggle raw display
\( T_{19} + 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 8 \) Copy content Toggle raw display
$7$ \( T^{2} - 200 \) Copy content Toggle raw display
$11$ \( (T - 20)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 1568 \) Copy content Toggle raw display
$17$ \( (T - 34)^{2} \) Copy content Toggle raw display
$19$ \( (T + 52)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 3872 \) Copy content Toggle raw display
$29$ \( T^{2} - 40328 \) Copy content Toggle raw display
$31$ \( T^{2} - 12168 \) Copy content Toggle raw display
$37$ \( T^{2} - 73728 \) Copy content Toggle raw display
$41$ \( (T - 26)^{2} \) Copy content Toggle raw display
$43$ \( (T + 252)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 119072 \) Copy content Toggle raw display
$53$ \( T^{2} - 464648 \) Copy content Toggle raw display
$59$ \( (T - 364)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 540800 \) Copy content Toggle raw display
$67$ \( (T + 628)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 111392 \) Copy content Toggle raw display
$73$ \( (T - 338)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 622728 \) Copy content Toggle raw display
$83$ \( (T - 1036)^{2} \) Copy content Toggle raw display
$89$ \( (T + 234)^{2} \) Copy content Toggle raw display
$97$ \( (T + 178)^{2} \) Copy content Toggle raw display
show more
show less