Properties

Label 2304.4
Level 2304
Weight 4
Dimension 196524
Nonzero newspaces 24
Sturm bound 1179648
Trace bound 49

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(1179648\)
Trace bound: \(49\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(2304))\).

Total New Old
Modular forms 445184 197460 247724
Cusp forms 439552 196524 243028
Eisenstein series 5632 936 4696

Trace form

\( 196524 q - 96 q^{2} - 96 q^{3} - 96 q^{4} - 96 q^{5} - 128 q^{6} - 72 q^{7} - 96 q^{8} - 160 q^{9} + O(q^{10}) \) \( 196524 q - 96 q^{2} - 96 q^{3} - 96 q^{4} - 96 q^{5} - 128 q^{6} - 72 q^{7} - 96 q^{8} - 160 q^{9} - 288 q^{10} - 72 q^{11} - 128 q^{12} - 96 q^{13} - 96 q^{14} - 96 q^{15} - 96 q^{16} - 144 q^{17} - 128 q^{18} - 216 q^{19} - 96 q^{20} - 128 q^{21} - 96 q^{22} - 72 q^{23} - 128 q^{24} - 120 q^{25} - 96 q^{26} - 96 q^{27} - 288 q^{28} - 96 q^{29} - 128 q^{30} - 80 q^{31} - 96 q^{32} - 224 q^{33} - 96 q^{34} - 72 q^{35} - 128 q^{36} - 288 q^{37} - 96 q^{38} - 96 q^{39} - 96 q^{40} - 120 q^{41} - 128 q^{42} - 72 q^{43} - 96 q^{44} - 128 q^{45} - 288 q^{46} - 72 q^{47} - 128 q^{48} - 1516 q^{49} - 96 q^{50} - 96 q^{51} - 96 q^{52} - 1600 q^{53} - 128 q^{54} - 792 q^{55} - 96 q^{56} - 160 q^{57} - 96 q^{58} + 2680 q^{59} - 128 q^{60} + 3552 q^{61} - 96 q^{62} - 96 q^{63} - 288 q^{64} + 3688 q^{65} - 128 q^{66} + 4008 q^{67} - 96 q^{68} - 128 q^{69} - 96 q^{70} + 376 q^{71} - 128 q^{72} - 2088 q^{73} - 96 q^{74} - 96 q^{75} - 96 q^{76} - 3904 q^{77} - 128 q^{78} - 5736 q^{79} - 96 q^{80} - 192 q^{81} - 288 q^{82} - 72 q^{83} - 128 q^{84} - 1096 q^{85} - 96 q^{86} - 96 q^{87} - 96 q^{88} - 120 q^{89} - 128 q^{90} - 216 q^{91} - 96 q^{92} - 128 q^{93} - 96 q^{94} - 48 q^{95} - 128 q^{96} - 168 q^{97} - 96 q^{98} - 96 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(2304))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2304.4.a \(\chi_{2304}(1, \cdot)\) 2304.4.a.a 1 1
2304.4.a.b 1
2304.4.a.c 1
2304.4.a.d 1
2304.4.a.e 1
2304.4.a.f 1
2304.4.a.g 1
2304.4.a.h 1
2304.4.a.i 1
2304.4.a.j 1
2304.4.a.k 1
2304.4.a.l 1
2304.4.a.m 1
2304.4.a.n 1
2304.4.a.o 1
2304.4.a.p 1
2304.4.a.q 2
2304.4.a.r 2
2304.4.a.s 2
2304.4.a.t 2
2304.4.a.u 2
2304.4.a.v 2
2304.4.a.w 2
2304.4.a.x 2
2304.4.a.y 2
2304.4.a.z 2
2304.4.a.ba 2
2304.4.a.bb 2
2304.4.a.bc 2
2304.4.a.bd 2
2304.4.a.be 2
2304.4.a.bf 2
2304.4.a.bg 2
2304.4.a.bh 2
2304.4.a.bi 2
2304.4.a.bj 2
2304.4.a.bk 2
2304.4.a.bl 2
2304.4.a.bm 2
2304.4.a.bn 2
2304.4.a.bo 2
2304.4.a.bp 2
2304.4.a.bq 2
2304.4.a.br 2
2304.4.a.bs 2
2304.4.a.bt 3
2304.4.a.bu 3
2304.4.a.bv 3
2304.4.a.bw 3
2304.4.a.bx 4
2304.4.a.by 4
2304.4.a.bz 4
2304.4.a.ca 4
2304.4.a.cb 4
2304.4.a.cc 4
2304.4.a.cd 8
2304.4.c \(\chi_{2304}(2303, \cdot)\) 2304.4.c.a 2 1
2304.4.c.b 2
2304.4.c.c 2
2304.4.c.d 2
2304.4.c.e 4
2304.4.c.f 4
2304.4.c.g 6
2304.4.c.h 6
2304.4.c.i 6
2304.4.c.j 6
2304.4.c.k 8
2304.4.c.l 8
2304.4.c.m 16
2304.4.c.n 24
2304.4.d \(\chi_{2304}(1153, \cdot)\) n/a 118 1
2304.4.f \(\chi_{2304}(1151, \cdot)\) 2304.4.f.a 4 1
2304.4.f.b 4
2304.4.f.c 4
2304.4.f.d 4
2304.4.f.e 8
2304.4.f.f 8
2304.4.f.g 8
2304.4.f.h 8
2304.4.f.i 12
2304.4.f.j 12
2304.4.f.k 12
2304.4.f.l 12
2304.4.i \(\chi_{2304}(769, \cdot)\) n/a 568 2
2304.4.k \(\chi_{2304}(577, \cdot)\) n/a 240 2
2304.4.l \(\chi_{2304}(575, \cdot)\) n/a 192 2
2304.4.p \(\chi_{2304}(383, \cdot)\) n/a 568 2
2304.4.r \(\chi_{2304}(385, \cdot)\) n/a 568 2
2304.4.s \(\chi_{2304}(767, \cdot)\) n/a 568 2
2304.4.v \(\chi_{2304}(289, \cdot)\) n/a 472 4
2304.4.w \(\chi_{2304}(287, \cdot)\) n/a 384 4
2304.4.y \(\chi_{2304}(191, \cdot)\) n/a 1152 4
2304.4.bb \(\chi_{2304}(193, \cdot)\) n/a 1152 4
2304.4.bd \(\chi_{2304}(145, \cdot)\) n/a 952 8
2304.4.be \(\chi_{2304}(143, \cdot)\) n/a 768 8
2304.4.bg \(\chi_{2304}(97, \cdot)\) n/a 2272 8
2304.4.bj \(\chi_{2304}(95, \cdot)\) n/a 2272 8
2304.4.bl \(\chi_{2304}(73, \cdot)\) None 0 16
2304.4.bm \(\chi_{2304}(71, \cdot)\) None 0 16
2304.4.bp \(\chi_{2304}(47, \cdot)\) n/a 4576 16
2304.4.bq \(\chi_{2304}(49, \cdot)\) n/a 4576 16
2304.4.bt \(\chi_{2304}(37, \cdot)\) n/a 15328 32
2304.4.bu \(\chi_{2304}(35, \cdot)\) n/a 12288 32
2304.4.bw \(\chi_{2304}(23, \cdot)\) None 0 32
2304.4.bz \(\chi_{2304}(25, \cdot)\) None 0 32
2304.4.ca \(\chi_{2304}(13, \cdot)\) n/a 73600 64
2304.4.cd \(\chi_{2304}(11, \cdot)\) n/a 73600 64

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(2304))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(2304)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(384))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(576))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(768))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1152))\)\(^{\oplus 2}\)