Properties

Label 2304.3.g.k
Level $2304$
Weight $3$
Character orbit 2304.g
Analytic conductor $62.779$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2304.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(62.7794529086\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Defining polynomial: \(x^{2} + 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 12\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q +O(q^{10})\) \( q + \beta q^{11} + 2 q^{17} + \beta q^{19} -25 q^{25} -46 q^{41} -5 \beta q^{43} + 49 q^{49} + 5 \beta q^{59} -7 \beta q^{67} -142 q^{73} + 3 \beta q^{83} -146 q^{89} + 94 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + O(q^{10}) \) \( 2q + 4q^{17} - 50q^{25} - 92q^{41} + 98q^{49} - 284q^{73} - 292q^{89} + 188q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1279.1
1.41421i
1.41421i
0 0 0 0 0 0 0 0 0
1279.2 0 0 0 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
4.b odd 2 1 inner
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.3.g.k 2
3.b odd 2 1 256.3.c.d 2
4.b odd 2 1 inner 2304.3.g.k 2
8.b even 2 1 inner 2304.3.g.k 2
8.d odd 2 1 CM 2304.3.g.k 2
12.b even 2 1 256.3.c.d 2
16.e even 4 2 1152.3.b.c 2
16.f odd 4 2 1152.3.b.c 2
24.f even 2 1 256.3.c.d 2
24.h odd 2 1 256.3.c.d 2
48.i odd 4 2 128.3.d.b 2
48.k even 4 2 128.3.d.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.3.d.b 2 48.i odd 4 2
128.3.d.b 2 48.k even 4 2
256.3.c.d 2 3.b odd 2 1
256.3.c.d 2 12.b even 2 1
256.3.c.d 2 24.f even 2 1
256.3.c.d 2 24.h odd 2 1
1152.3.b.c 2 16.e even 4 2
1152.3.b.c 2 16.f odd 4 2
2304.3.g.k 2 1.a even 1 1 trivial
2304.3.g.k 2 4.b odd 2 1 inner
2304.3.g.k 2 8.b even 2 1 inner
2304.3.g.k 2 8.d odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2304, [\chi])\):

\( T_{5} \)
\( T_{7} \)
\( T_{11}^{2} + 288 \)
\( T_{13} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( 288 + T^{2} \)
$13$ \( T^{2} \)
$17$ \( ( -2 + T )^{2} \)
$19$ \( 288 + T^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( T^{2} \)
$41$ \( ( 46 + T )^{2} \)
$43$ \( 7200 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( 7200 + T^{2} \)
$61$ \( T^{2} \)
$67$ \( 14112 + T^{2} \)
$71$ \( T^{2} \)
$73$ \( ( 142 + T )^{2} \)
$79$ \( T^{2} \)
$83$ \( 2592 + T^{2} \)
$89$ \( ( 146 + T )^{2} \)
$97$ \( ( -94 + T )^{2} \)
show more
show less