# Properties

 Label 2304.3.b.m Level $2304$ Weight $3$ Character orbit 2304.b Analytic conductor $62.779$ Analytic rank $0$ Dimension $4$ CM discriminant -3 Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2304 = 2^{8} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 2304.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$62.7794529086$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$2^{10}$$ Twist minimal: no (minimal twist has level 144) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -8 + 16 \zeta_{12}^{2} ) q^{7} +O(q^{10})$$ $$q + ( -8 + 16 \zeta_{12}^{2} ) q^{7} -22 \zeta_{12}^{3} q^{13} + ( -32 \zeta_{12} + 16 \zeta_{12}^{3} ) q^{19} + 25 q^{25} + ( -24 + 48 \zeta_{12}^{2} ) q^{31} + 26 \zeta_{12}^{3} q^{37} + ( -96 \zeta_{12} + 48 \zeta_{12}^{3} ) q^{43} -143 q^{49} -74 \zeta_{12}^{3} q^{61} + ( 64 \zeta_{12} - 32 \zeta_{12}^{3} ) q^{67} -46 q^{73} + ( 40 - 80 \zeta_{12}^{2} ) q^{79} + ( 352 \zeta_{12} - 176 \zeta_{12}^{3} ) q^{91} -2 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q + 100q^{25} - 572q^{49} - 184q^{73} - 8q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times$$.

 $$n$$ $$1279$$ $$1793$$ $$2053$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
127.1
 −0.866025 + 0.500000i 0.866025 − 0.500000i 0.866025 + 0.500000i −0.866025 − 0.500000i
0 0 0 0 0 13.8564i 0 0 0
127.2 0 0 0 0 0 13.8564i 0 0 0
127.3 0 0 0 0 0 13.8564i 0 0 0
127.4 0 0 0 0 0 13.8564i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.3.b.m 4
3.b odd 2 1 CM 2304.3.b.m 4
4.b odd 2 1 inner 2304.3.b.m 4
8.b even 2 1 inner 2304.3.b.m 4
8.d odd 2 1 inner 2304.3.b.m 4
12.b even 2 1 inner 2304.3.b.m 4
16.e even 4 1 144.3.g.c 2
16.e even 4 1 576.3.g.f 2
16.f odd 4 1 144.3.g.c 2
16.f odd 4 1 576.3.g.f 2
24.f even 2 1 inner 2304.3.b.m 4
24.h odd 2 1 inner 2304.3.b.m 4
48.i odd 4 1 144.3.g.c 2
48.i odd 4 1 576.3.g.f 2
48.k even 4 1 144.3.g.c 2
48.k even 4 1 576.3.g.f 2
80.i odd 4 1 3600.3.j.e 4
80.j even 4 1 3600.3.j.e 4
80.k odd 4 1 3600.3.e.h 2
80.q even 4 1 3600.3.e.h 2
80.s even 4 1 3600.3.j.e 4
80.t odd 4 1 3600.3.j.e 4
144.u even 12 1 1296.3.o.f 2
144.u even 12 1 1296.3.o.k 2
144.v odd 12 1 1296.3.o.f 2
144.v odd 12 1 1296.3.o.k 2
144.w odd 12 1 1296.3.o.f 2
144.w odd 12 1 1296.3.o.k 2
144.x even 12 1 1296.3.o.f 2
144.x even 12 1 1296.3.o.k 2
240.t even 4 1 3600.3.e.h 2
240.z odd 4 1 3600.3.j.e 4
240.bb even 4 1 3600.3.j.e 4
240.bd odd 4 1 3600.3.j.e 4
240.bf even 4 1 3600.3.j.e 4
240.bm odd 4 1 3600.3.e.h 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.3.g.c 2 16.e even 4 1
144.3.g.c 2 16.f odd 4 1
144.3.g.c 2 48.i odd 4 1
144.3.g.c 2 48.k even 4 1
576.3.g.f 2 16.e even 4 1
576.3.g.f 2 16.f odd 4 1
576.3.g.f 2 48.i odd 4 1
576.3.g.f 2 48.k even 4 1
1296.3.o.f 2 144.u even 12 1
1296.3.o.f 2 144.v odd 12 1
1296.3.o.f 2 144.w odd 12 1
1296.3.o.f 2 144.x even 12 1
1296.3.o.k 2 144.u even 12 1
1296.3.o.k 2 144.v odd 12 1
1296.3.o.k 2 144.w odd 12 1
1296.3.o.k 2 144.x even 12 1
2304.3.b.m 4 1.a even 1 1 trivial
2304.3.b.m 4 3.b odd 2 1 CM
2304.3.b.m 4 4.b odd 2 1 inner
2304.3.b.m 4 8.b even 2 1 inner
2304.3.b.m 4 8.d odd 2 1 inner
2304.3.b.m 4 12.b even 2 1 inner
2304.3.b.m 4 24.f even 2 1 inner
2304.3.b.m 4 24.h odd 2 1 inner
3600.3.e.h 2 80.k odd 4 1
3600.3.e.h 2 80.q even 4 1
3600.3.e.h 2 240.t even 4 1
3600.3.e.h 2 240.bm odd 4 1
3600.3.j.e 4 80.i odd 4 1
3600.3.j.e 4 80.j even 4 1
3600.3.j.e 4 80.s even 4 1
3600.3.j.e 4 80.t odd 4 1
3600.3.j.e 4 240.z odd 4 1
3600.3.j.e 4 240.bb even 4 1
3600.3.j.e 4 240.bd odd 4 1
3600.3.j.e 4 240.bf even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(2304, [\chi])$$:

 $$T_{5}$$ $$T_{7}^{2} + 192$$ $$T_{11}$$ $$T_{17}$$ $$T_{19}^{2} - 768$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$T^{4}$$
$7$ $$( 192 + T^{2} )^{2}$$
$11$ $$T^{4}$$
$13$ $$( 484 + T^{2} )^{2}$$
$17$ $$T^{4}$$
$19$ $$( -768 + T^{2} )^{2}$$
$23$ $$T^{4}$$
$29$ $$T^{4}$$
$31$ $$( 1728 + T^{2} )^{2}$$
$37$ $$( 676 + T^{2} )^{2}$$
$41$ $$T^{4}$$
$43$ $$( -6912 + T^{2} )^{2}$$
$47$ $$T^{4}$$
$53$ $$T^{4}$$
$59$ $$T^{4}$$
$61$ $$( 5476 + T^{2} )^{2}$$
$67$ $$( -3072 + T^{2} )^{2}$$
$71$ $$T^{4}$$
$73$ $$( 46 + T )^{4}$$
$79$ $$( 4800 + T^{2} )^{2}$$
$83$ $$T^{4}$$
$89$ $$T^{4}$$
$97$ $$( 2 + T )^{4}$$