Properties

Label 2304.3.b.j
Level $2304$
Weight $3$
Character orbit 2304.b
Analytic conductor $62.779$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2304.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(62.7794529086\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 4 \zeta_{8} + 2 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{5} + ( 4 \zeta_{8} - 4 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{7} +O(q^{10})\) \( q + ( 4 \zeta_{8} + 2 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{5} + ( 4 \zeta_{8} - 4 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{7} + ( -10 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{11} + ( 4 \zeta_{8} - 6 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{13} + ( 2 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{17} + ( 18 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{19} + ( 4 \zeta_{8} + 28 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{23} + ( -11 - 16 \zeta_{8} + 16 \zeta_{8}^{3} ) q^{25} + ( -4 \zeta_{8} - 34 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{29} + ( 32 \zeta_{8} + 32 \zeta_{8}^{3} ) q^{31} + ( -24 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{35} + ( 28 \zeta_{8} - 10 \zeta_{8}^{2} + 28 \zeta_{8}^{3} ) q^{37} + ( 2 + 16 \zeta_{8} - 16 \zeta_{8}^{3} ) q^{41} + ( 2 + 34 \zeta_{8} - 34 \zeta_{8}^{3} ) q^{43} + ( 8 \zeta_{8} + 24 \zeta_{8}^{2} + 8 \zeta_{8}^{3} ) q^{47} + ( 1 + 32 \zeta_{8} - 32 \zeta_{8}^{3} ) q^{49} + ( 4 \zeta_{8} - 22 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{53} + ( -28 \zeta_{8} + 28 \zeta_{8}^{2} - 28 \zeta_{8}^{3} ) q^{55} + ( 22 + 22 \zeta_{8} - 22 \zeta_{8}^{3} ) q^{59} + ( -28 \zeta_{8} + 74 \zeta_{8}^{2} - 28 \zeta_{8}^{3} ) q^{61} + ( -20 + 16 \zeta_{8} - 16 \zeta_{8}^{3} ) q^{65} + ( -54 - 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{67} + ( -20 \zeta_{8} - 12 \zeta_{8}^{2} - 20 \zeta_{8}^{3} ) q^{71} + ( -22 - 24 \zeta_{8} + 24 \zeta_{8}^{3} ) q^{73} + ( -64 \zeta_{8} + 88 \zeta_{8}^{2} - 64 \zeta_{8}^{3} ) q^{77} + ( 24 \zeta_{8} + 104 \zeta_{8}^{2} + 24 \zeta_{8}^{3} ) q^{79} + ( -10 - 74 \zeta_{8} + 74 \zeta_{8}^{3} ) q^{83} + ( 24 \zeta_{8} + 68 \zeta_{8}^{2} + 24 \zeta_{8}^{3} ) q^{85} + ( 54 - 40 \zeta_{8} + 40 \zeta_{8}^{3} ) q^{89} + ( -56 + 40 \zeta_{8} - 40 \zeta_{8}^{3} ) q^{91} + ( 76 \zeta_{8} + 52 \zeta_{8}^{2} + 76 \zeta_{8}^{3} ) q^{95} + ( -82 - 40 \zeta_{8} + 40 \zeta_{8}^{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q - 40q^{11} + 8q^{17} + 72q^{19} - 44q^{25} - 96q^{35} + 8q^{41} + 8q^{43} + 4q^{49} + 88q^{59} - 80q^{65} - 216q^{67} - 88q^{73} - 40q^{83} + 216q^{89} - 224q^{91} - 328q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
0 0 0 7.65685i 0 1.65685i 0 0 0
127.2 0 0 0 3.65685i 0 9.65685i 0 0 0
127.3 0 0 0 3.65685i 0 9.65685i 0 0 0
127.4 0 0 0 7.65685i 0 1.65685i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.3.b.j 4
3.b odd 2 1 256.3.d.e 4
4.b odd 2 1 2304.3.b.p 4
8.b even 2 1 2304.3.b.p 4
8.d odd 2 1 inner 2304.3.b.j 4
12.b even 2 1 256.3.d.d 4
16.e even 4 1 1152.3.g.a 4
16.e even 4 1 1152.3.g.b 4
16.f odd 4 1 1152.3.g.a 4
16.f odd 4 1 1152.3.g.b 4
24.f even 2 1 256.3.d.e 4
24.h odd 2 1 256.3.d.d 4
48.i odd 4 1 128.3.c.a 4
48.i odd 4 1 128.3.c.b yes 4
48.k even 4 1 128.3.c.a 4
48.k even 4 1 128.3.c.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.3.c.a 4 48.i odd 4 1
128.3.c.a 4 48.k even 4 1
128.3.c.b yes 4 48.i odd 4 1
128.3.c.b yes 4 48.k even 4 1
256.3.d.d 4 12.b even 2 1
256.3.d.d 4 24.h odd 2 1
256.3.d.e 4 3.b odd 2 1
256.3.d.e 4 24.f even 2 1
1152.3.g.a 4 16.e even 4 1
1152.3.g.a 4 16.f odd 4 1
1152.3.g.b 4 16.e even 4 1
1152.3.g.b 4 16.f odd 4 1
2304.3.b.j 4 1.a even 1 1 trivial
2304.3.b.j 4 8.d odd 2 1 inner
2304.3.b.p 4 4.b odd 2 1
2304.3.b.p 4 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2304, [\chi])\):

\( T_{5}^{4} + 72 T_{5}^{2} + 784 \)
\( T_{7}^{4} + 96 T_{7}^{2} + 256 \)
\( T_{11}^{2} + 20 T_{11} + 28 \)
\( T_{17}^{2} - 4 T_{17} - 124 \)
\( T_{19}^{2} - 36 T_{19} + 316 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 784 + 72 T^{2} + T^{4} \)
$7$ \( 256 + 96 T^{2} + T^{4} \)
$11$ \( ( 28 + 20 T + T^{2} )^{2} \)
$13$ \( 16 + 136 T^{2} + T^{4} \)
$17$ \( ( -124 - 4 T + T^{2} )^{2} \)
$19$ \( ( 316 - 36 T + T^{2} )^{2} \)
$23$ \( 565504 + 1632 T^{2} + T^{4} \)
$29$ \( 1263376 + 2376 T^{2} + T^{4} \)
$31$ \( ( 2048 + T^{2} )^{2} \)
$37$ \( 2155024 + 3336 T^{2} + T^{4} \)
$41$ \( ( -508 - 4 T + T^{2} )^{2} \)
$43$ \( ( -2308 - 4 T + T^{2} )^{2} \)
$47$ \( 200704 + 1408 T^{2} + T^{4} \)
$53$ \( 204304 + 1032 T^{2} + T^{4} \)
$59$ \( ( -484 - 44 T + T^{2} )^{2} \)
$61$ \( 15272464 + 14088 T^{2} + T^{4} \)
$67$ \( ( 2844 + 108 T + T^{2} )^{2} \)
$71$ \( 430336 + 1888 T^{2} + T^{4} \)
$73$ \( ( -668 + 44 T + T^{2} )^{2} \)
$79$ \( 93392896 + 23936 T^{2} + T^{4} \)
$83$ \( ( -10852 + 20 T + T^{2} )^{2} \)
$89$ \( ( -284 - 108 T + T^{2} )^{2} \)
$97$ \( ( 3524 + 164 T + T^{2} )^{2} \)
show more
show less