Properties

Label 2304.3
Level 2304
Weight 3
Dimension 130860
Nonzero newspaces 24
Sturm bound 884736
Trace bound 49

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(884736\)
Trace bound: \(49\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(2304))\).

Total New Old
Modular forms 297728 131796 165932
Cusp forms 292096 130860 161236
Eisenstein series 5632 936 4696

Trace form

\( 130860q - 96q^{2} - 96q^{3} - 96q^{4} - 96q^{5} - 128q^{6} - 72q^{7} - 96q^{8} - 160q^{9} + O(q^{10}) \) \( 130860q - 96q^{2} - 96q^{3} - 96q^{4} - 96q^{5} - 128q^{6} - 72q^{7} - 96q^{8} - 160q^{9} - 288q^{10} - 72q^{11} - 128q^{12} - 96q^{13} - 96q^{14} - 96q^{15} - 96q^{16} - 144q^{17} - 128q^{18} - 216q^{19} - 96q^{20} - 128q^{21} - 96q^{22} - 72q^{23} - 128q^{24} - 120q^{25} - 96q^{26} - 96q^{27} - 288q^{28} - 96q^{29} - 128q^{30} - 64q^{31} - 96q^{32} - 224q^{33} - 96q^{34} - 72q^{35} - 128q^{36} - 288q^{37} - 96q^{38} - 96q^{39} - 96q^{40} - 120q^{41} - 128q^{42} - 72q^{43} - 96q^{44} - 128q^{45} - 288q^{46} - 72q^{47} - 128q^{48} + 52q^{49} - 96q^{50} - 96q^{51} - 96q^{52} + 224q^{53} - 128q^{54} + 296q^{55} - 96q^{56} - 160q^{57} - 96q^{58} + 184q^{59} - 128q^{60} + 32q^{61} - 96q^{62} - 96q^{63} - 288q^{64} - 344q^{65} - 128q^{66} - 392q^{67} - 96q^{68} - 128q^{69} - 96q^{70} - 584q^{71} - 128q^{72} - 1000q^{73} - 96q^{74} - 96q^{75} - 96q^{76} - 544q^{77} - 128q^{78} - 584q^{79} - 96q^{80} - 192q^{81} - 288q^{82} - 72q^{83} - 128q^{84} - 296q^{85} - 96q^{86} - 96q^{87} - 96q^{88} - 120q^{89} - 128q^{90} - 216q^{91} - 96q^{92} - 128q^{93} - 96q^{94} - 96q^{95} - 128q^{96} - 168q^{97} - 96q^{98} - 96q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(2304))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2304.3.b \(\chi_{2304}(127, \cdot)\) 2304.3.b.a 2 1
2304.3.b.b 2
2304.3.b.c 2
2304.3.b.d 2
2304.3.b.e 2
2304.3.b.f 2
2304.3.b.g 2
2304.3.b.h 2
2304.3.b.i 2
2304.3.b.j 4
2304.3.b.k 4
2304.3.b.l 4
2304.3.b.m 4
2304.3.b.n 4
2304.3.b.o 4
2304.3.b.p 4
2304.3.b.q 8
2304.3.b.r 8
2304.3.b.s 8
2304.3.b.t 8
2304.3.e \(\chi_{2304}(1025, \cdot)\) 2304.3.e.a 2 1
2304.3.e.b 2
2304.3.e.c 2
2304.3.e.d 2
2304.3.e.e 4
2304.3.e.f 4
2304.3.e.g 4
2304.3.e.h 4
2304.3.e.i 4
2304.3.e.j 4
2304.3.e.k 4
2304.3.e.l 4
2304.3.e.m 8
2304.3.e.n 8
2304.3.e.o 8
2304.3.g \(\chi_{2304}(1279, \cdot)\) 2304.3.g.a 1 1
2304.3.g.b 1
2304.3.g.c 1
2304.3.g.d 1
2304.3.g.e 1
2304.3.g.f 1
2304.3.g.g 2
2304.3.g.h 2
2304.3.g.i 2
2304.3.g.j 2
2304.3.g.k 2
2304.3.g.l 2
2304.3.g.m 2
2304.3.g.n 2
2304.3.g.o 4
2304.3.g.p 4
2304.3.g.q 4
2304.3.g.r 4
2304.3.g.s 4
2304.3.g.t 4
2304.3.g.u 4
2304.3.g.v 4
2304.3.g.w 4
2304.3.g.x 4
2304.3.g.y 8
2304.3.g.z 8
2304.3.h \(\chi_{2304}(2177, \cdot)\) 2304.3.h.a 4 1
2304.3.h.b 4
2304.3.h.c 4
2304.3.h.d 4
2304.3.h.e 4
2304.3.h.f 4
2304.3.h.g 4
2304.3.h.h 4
2304.3.h.i 8
2304.3.h.j 8
2304.3.h.k 8
2304.3.h.l 8
2304.3.j \(\chi_{2304}(449, \cdot)\) n/a 128 2
2304.3.m \(\chi_{2304}(703, \cdot)\) n/a 160 2
2304.3.n \(\chi_{2304}(641, \cdot)\) n/a 376 2
2304.3.o \(\chi_{2304}(511, \cdot)\) n/a 376 2
2304.3.q \(\chi_{2304}(257, \cdot)\) n/a 376 2
2304.3.t \(\chi_{2304}(895, \cdot)\) n/a 376 2
2304.3.u \(\chi_{2304}(415, \cdot)\) n/a 312 4
2304.3.x \(\chi_{2304}(161, \cdot)\) n/a 256 4
2304.3.z \(\chi_{2304}(319, \cdot)\) n/a 768 4
2304.3.ba \(\chi_{2304}(65, \cdot)\) n/a 768 4
2304.3.bc \(\chi_{2304}(17, \cdot)\) n/a 512 8
2304.3.bf \(\chi_{2304}(271, \cdot)\) n/a 632 8
2304.3.bh \(\chi_{2304}(31, \cdot)\) n/a 1504 8
2304.3.bi \(\chi_{2304}(353, \cdot)\) n/a 1504 8
2304.3.bk \(\chi_{2304}(55, \cdot)\) None 0 16
2304.3.bn \(\chi_{2304}(89, \cdot)\) None 0 16
2304.3.bo \(\chi_{2304}(79, \cdot)\) n/a 3040 16
2304.3.br \(\chi_{2304}(113, \cdot)\) n/a 3040 16
2304.3.bs \(\chi_{2304}(53, \cdot)\) n/a 8192 32
2304.3.bv \(\chi_{2304}(19, \cdot)\) n/a 10208 32
2304.3.bx \(\chi_{2304}(41, \cdot)\) None 0 32
2304.3.by \(\chi_{2304}(7, \cdot)\) None 0 32
2304.3.cb \(\chi_{2304}(5, \cdot)\) n/a 49024 64
2304.3.cc \(\chi_{2304}(43, \cdot)\) n/a 49024 64

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(2304))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(2304)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 14}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 15}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(384))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(576))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(768))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(1152))\)\(^{\oplus 2}\)