Properties

Label 2304.2.k.j
Level $2304$
Weight $2$
Character orbit 2304.k
Analytic conductor $18.398$
Analytic rank $0$
Dimension $8$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.3975326257\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -3 \zeta_{24} + 3 \zeta_{24}^{3} + \zeta_{24}^{5} - 2 \zeta_{24}^{7} ) q^{7} +O(q^{10})\) \( q + ( -3 \zeta_{24} + 3 \zeta_{24}^{3} + \zeta_{24}^{5} - 2 \zeta_{24}^{7} ) q^{7} + ( -1 - 4 \zeta_{24}^{2} + 4 \zeta_{24}^{4} + \zeta_{24}^{6} ) q^{13} + ( -2 \zeta_{24}^{3} + 4 \zeta_{24}^{7} ) q^{19} -5 \zeta_{24}^{6} q^{25} + ( -5 \zeta_{24} - 5 \zeta_{24}^{3} - \zeta_{24}^{5} + 6 \zeta_{24}^{7} ) q^{31} + ( 7 - 4 \zeta_{24}^{2} - 4 \zeta_{24}^{4} + 7 \zeta_{24}^{6} ) q^{37} + ( -6 \zeta_{24} - 6 \zeta_{24}^{5} ) q^{43} + ( -7 + 16 \zeta_{24}^{2} - 8 \zeta_{24}^{6} ) q^{49} + ( -9 - 4 \zeta_{24}^{2} + 4 \zeta_{24}^{4} + 9 \zeta_{24}^{6} ) q^{61} + ( -16 \zeta_{24} + 16 \zeta_{24}^{5} ) q^{67} + ( 8 - 16 \zeta_{24}^{4} ) q^{73} + ( -3 \zeta_{24} - 3 \zeta_{24}^{3} - 7 \zeta_{24}^{5} + 10 \zeta_{24}^{7} ) q^{79} + ( -10 \zeta_{24} + 16 \zeta_{24}^{3} - 10 \zeta_{24}^{5} ) q^{91} + ( 16 \zeta_{24}^{2} - 8 \zeta_{24}^{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q + 8q^{13} + 40q^{37} - 56q^{49} - 56q^{61} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{24}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
−0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
−0.258819 0.965926i
0 0 0 0 0 5.27792i 0 0 0
577.2 0 0 0 0 0 0.378937i 0 0 0
577.3 0 0 0 0 0 0.378937i 0 0 0
577.4 0 0 0 0 0 5.27792i 0 0 0
1729.1 0 0 0 0 0 5.27792i 0 0 0
1729.2 0 0 0 0 0 0.378937i 0 0 0
1729.3 0 0 0 0 0 0.378937i 0 0 0
1729.4 0 0 0 0 0 5.27792i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1729.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
4.b odd 2 1 inner
12.b even 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner
48.i odd 4 1 inner
48.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.2.k.j yes 8
3.b odd 2 1 CM 2304.2.k.j yes 8
4.b odd 2 1 inner 2304.2.k.j yes 8
8.b even 2 1 2304.2.k.g 8
8.d odd 2 1 2304.2.k.g 8
12.b even 2 1 inner 2304.2.k.j yes 8
16.e even 4 1 2304.2.k.g 8
16.e even 4 1 inner 2304.2.k.j yes 8
16.f odd 4 1 2304.2.k.g 8
16.f odd 4 1 inner 2304.2.k.j yes 8
24.f even 2 1 2304.2.k.g 8
24.h odd 2 1 2304.2.k.g 8
32.g even 8 1 9216.2.a.bf 4
32.g even 8 1 9216.2.a.bg 4
32.h odd 8 1 9216.2.a.bf 4
32.h odd 8 1 9216.2.a.bg 4
48.i odd 4 1 2304.2.k.g 8
48.i odd 4 1 inner 2304.2.k.j yes 8
48.k even 4 1 2304.2.k.g 8
48.k even 4 1 inner 2304.2.k.j yes 8
96.o even 8 1 9216.2.a.bf 4
96.o even 8 1 9216.2.a.bg 4
96.p odd 8 1 9216.2.a.bf 4
96.p odd 8 1 9216.2.a.bg 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2304.2.k.g 8 8.b even 2 1
2304.2.k.g 8 8.d odd 2 1
2304.2.k.g 8 16.e even 4 1
2304.2.k.g 8 16.f odd 4 1
2304.2.k.g 8 24.f even 2 1
2304.2.k.g 8 24.h odd 2 1
2304.2.k.g 8 48.i odd 4 1
2304.2.k.g 8 48.k even 4 1
2304.2.k.j yes 8 1.a even 1 1 trivial
2304.2.k.j yes 8 3.b odd 2 1 CM
2304.2.k.j yes 8 4.b odd 2 1 inner
2304.2.k.j yes 8 12.b even 2 1 inner
2304.2.k.j yes 8 16.e even 4 1 inner
2304.2.k.j yes 8 16.f odd 4 1 inner
2304.2.k.j yes 8 48.i odd 4 1 inner
2304.2.k.j yes 8 48.k even 4 1 inner
9216.2.a.bf 4 32.g even 8 1
9216.2.a.bf 4 32.h odd 8 1
9216.2.a.bf 4 96.o even 8 1
9216.2.a.bf 4 96.p odd 8 1
9216.2.a.bg 4 32.g even 8 1
9216.2.a.bg 4 32.h odd 8 1
9216.2.a.bg 4 96.o even 8 1
9216.2.a.bg 4 96.p odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2304, [\chi])\):

\( T_{5} \)
\( T_{7}^{4} + 28 T_{7}^{2} + 4 \)
\( T_{13}^{4} - 4 T_{13}^{3} + 8 T_{13}^{2} + 88 T_{13} + 484 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 + 25 T^{4} )^{4} \)
$7$ \( ( 1 - 94 T^{4} + 2401 T^{8} )^{2} \)
$11$ \( ( 1 + 121 T^{4} )^{4} \)
$13$ \( ( 1 - 2 T + 13 T^{2} )^{4}( 1 - 22 T^{2} + 169 T^{4} )^{2} \)
$17$ \( ( 1 + 17 T^{2} )^{8} \)
$19$ \( ( 1 - 46 T^{4} + 130321 T^{8} )^{2} \)
$23$ \( ( 1 - 23 T^{2} )^{8} \)
$29$ \( ( 1 + 841 T^{4} )^{4} \)
$31$ \( ( 1 + 194 T^{4} + 923521 T^{8} )^{2} \)
$37$ \( ( 1 - 10 T + 37 T^{2} )^{4}( 1 + 26 T^{2} + 1369 T^{4} )^{2} \)
$41$ \( ( 1 - 41 T^{2} )^{8} \)
$43$ \( ( 1 - 3214 T^{4} + 3418801 T^{8} )^{2} \)
$47$ \( ( 1 + 47 T^{2} )^{8} \)
$53$ \( ( 1 + 2809 T^{4} )^{4} \)
$59$ \( ( 1 + 3481 T^{4} )^{4} \)
$61$ \( ( 1 + 14 T + 61 T^{2} )^{4}( 1 + 74 T^{2} + 3721 T^{4} )^{2} \)
$67$ \( ( 1 + 5906 T^{4} + 20151121 T^{8} )^{2} \)
$71$ \( ( 1 - 71 T^{2} )^{8} \)
$73$ \( ( 1 - 10 T + 73 T^{2} )^{4}( 1 + 10 T + 73 T^{2} )^{4} \)
$79$ \( ( 1 + 7682 T^{4} + 38950081 T^{8} )^{2} \)
$83$ \( ( 1 + 6889 T^{4} )^{4} \)
$89$ \( ( 1 - 89 T^{2} )^{8} \)
$97$ \( ( 1 + 2 T^{2} + 9409 T^{4} )^{4} \)
show more
show less