Properties

 Label 2304.2.k.d Level $2304$ Weight $2$ Character orbit 2304.k Analytic conductor $18.398$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2304 = 2^{8} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2304.k (of order $$4$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$18.3975326257$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(\zeta_{8})$$ Defining polynomial: $$x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 768) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{8}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 2 - 2 \zeta_{8}^{2} ) q^{5} + ( 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{7} +O(q^{10})$$ $$q + ( 2 - 2 \zeta_{8}^{2} ) q^{5} + ( 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{7} + 4 \zeta_{8}^{3} q^{11} + ( -3 - 3 \zeta_{8}^{2} ) q^{13} + 6 q^{17} -2 \zeta_{8} q^{19} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{23} -3 \zeta_{8}^{2} q^{25} + ( 4 + 4 \zeta_{8}^{2} ) q^{29} + ( 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{31} + 12 \zeta_{8} q^{35} + ( -3 + 3 \zeta_{8}^{2} ) q^{37} + 10 \zeta_{8}^{2} q^{41} + 6 \zeta_{8}^{3} q^{43} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{47} -11 q^{49} + ( 4 - 4 \zeta_{8}^{2} ) q^{53} + ( 8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{55} + ( -3 - 3 \zeta_{8}^{2} ) q^{61} -12 q^{65} + 4 \zeta_{8} q^{67} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{71} + 16 \zeta_{8}^{2} q^{73} + ( -12 - 12 \zeta_{8}^{2} ) q^{77} + ( -3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{79} + 16 \zeta_{8} q^{83} + ( 12 - 12 \zeta_{8}^{2} ) q^{85} + 14 \zeta_{8}^{2} q^{89} -18 \zeta_{8}^{3} q^{91} + ( -4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{95} -4 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 8 q^{5} + O(q^{10})$$ $$4 q + 8 q^{5} - 12 q^{13} + 24 q^{17} + 16 q^{29} - 12 q^{37} - 44 q^{49} + 16 q^{53} - 12 q^{61} - 48 q^{65} - 48 q^{77} + 48 q^{85} - 16 q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times$$.

 $$n$$ $$1279$$ $$1793$$ $$2053$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{8}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 −0.707107 − 0.707107i 0.707107 + 0.707107i 0.707107 − 0.707107i −0.707107 + 0.707107i
0 0 0 2.00000 2.00000i 0 4.24264i 0 0 0
577.2 0 0 0 2.00000 2.00000i 0 4.24264i 0 0 0
1729.1 0 0 0 2.00000 + 2.00000i 0 4.24264i 0 0 0
1729.2 0 0 0 2.00000 + 2.00000i 0 4.24264i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.2.k.d 4
3.b odd 2 1 768.2.j.a 4
4.b odd 2 1 inner 2304.2.k.d 4
8.b even 2 1 2304.2.k.a 4
8.d odd 2 1 2304.2.k.a 4
12.b even 2 1 768.2.j.a 4
16.e even 4 1 2304.2.k.a 4
16.e even 4 1 inner 2304.2.k.d 4
16.f odd 4 1 2304.2.k.a 4
16.f odd 4 1 inner 2304.2.k.d 4
24.f even 2 1 768.2.j.d yes 4
24.h odd 2 1 768.2.j.d yes 4
32.g even 8 1 9216.2.a.e 2
32.g even 8 1 9216.2.a.q 2
32.h odd 8 1 9216.2.a.e 2
32.h odd 8 1 9216.2.a.q 2
48.i odd 4 1 768.2.j.a 4
48.i odd 4 1 768.2.j.d yes 4
48.k even 4 1 768.2.j.a 4
48.k even 4 1 768.2.j.d yes 4
96.o even 8 1 3072.2.a.d 2
96.o even 8 1 3072.2.a.f 2
96.o even 8 2 3072.2.d.d 4
96.p odd 8 1 3072.2.a.d 2
96.p odd 8 1 3072.2.a.f 2
96.p odd 8 2 3072.2.d.d 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
768.2.j.a 4 3.b odd 2 1
768.2.j.a 4 12.b even 2 1
768.2.j.a 4 48.i odd 4 1
768.2.j.a 4 48.k even 4 1
768.2.j.d yes 4 24.f even 2 1
768.2.j.d yes 4 24.h odd 2 1
768.2.j.d yes 4 48.i odd 4 1
768.2.j.d yes 4 48.k even 4 1
2304.2.k.a 4 8.b even 2 1
2304.2.k.a 4 8.d odd 2 1
2304.2.k.a 4 16.e even 4 1
2304.2.k.a 4 16.f odd 4 1
2304.2.k.d 4 1.a even 1 1 trivial
2304.2.k.d 4 4.b odd 2 1 inner
2304.2.k.d 4 16.e even 4 1 inner
2304.2.k.d 4 16.f odd 4 1 inner
3072.2.a.d 2 96.o even 8 1
3072.2.a.d 2 96.p odd 8 1
3072.2.a.f 2 96.o even 8 1
3072.2.a.f 2 96.p odd 8 1
3072.2.d.d 4 96.o even 8 2
3072.2.d.d 4 96.p odd 8 2
9216.2.a.e 2 32.g even 8 1
9216.2.a.e 2 32.h odd 8 1
9216.2.a.q 2 32.g even 8 1
9216.2.a.q 2 32.h odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2304, [\chi])$$:

 $$T_{5}^{2} - 4 T_{5} + 8$$ $$T_{7}^{2} + 18$$ $$T_{13}^{2} + 6 T_{13} + 18$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$( 8 - 4 T + T^{2} )^{2}$$
$7$ $$( 18 + T^{2} )^{2}$$
$11$ $$256 + T^{4}$$
$13$ $$( 18 + 6 T + T^{2} )^{2}$$
$17$ $$( -6 + T )^{4}$$
$19$ $$16 + T^{4}$$
$23$ $$( 8 + T^{2} )^{2}$$
$29$ $$( 32 - 8 T + T^{2} )^{2}$$
$31$ $$( -18 + T^{2} )^{2}$$
$37$ $$( 18 + 6 T + T^{2} )^{2}$$
$41$ $$( 100 + T^{2} )^{2}$$
$43$ $$1296 + T^{4}$$
$47$ $$( -8 + T^{2} )^{2}$$
$53$ $$( 32 - 8 T + T^{2} )^{2}$$
$59$ $$T^{4}$$
$61$ $$( 18 + 6 T + T^{2} )^{2}$$
$67$ $$256 + T^{4}$$
$71$ $$( 8 + T^{2} )^{2}$$
$73$ $$( 256 + T^{2} )^{2}$$
$79$ $$( -18 + T^{2} )^{2}$$
$83$ $$65536 + T^{4}$$
$89$ $$( 196 + T^{2} )^{2}$$
$97$ $$( 4 + T )^{4}$$