# Properties

 Label 2304.2.k.c Level $2304$ Weight $2$ Character orbit 2304.k Analytic conductor $18.398$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2304 = 2^{8} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2304.k (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$18.3975326257$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(\zeta_{8})$$ Defining polynomial: $$x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 768) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{8}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{7} +O(q^{10})$$ $$q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{7} + ( 1 - \zeta_{8}^{2} ) q^{13} -6 q^{17} -6 \zeta_{8}^{3} q^{19} + ( -6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{23} -5 \zeta_{8}^{2} q^{25} + ( -6 + 6 \zeta_{8}^{2} ) q^{29} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{31} + ( 5 + 5 \zeta_{8}^{2} ) q^{37} -6 \zeta_{8}^{2} q^{41} -6 \zeta_{8} q^{43} + ( 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{47} + 5 q^{49} + ( 6 + 6 \zeta_{8}^{2} ) q^{53} + ( 5 - 5 \zeta_{8}^{2} ) q^{61} -4 \zeta_{8}^{3} q^{67} + ( -6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{71} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{79} -12 \zeta_{8}^{3} q^{83} -6 \zeta_{8}^{2} q^{89} + 2 \zeta_{8} q^{91} -12 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + O(q^{10})$$ $$4 q + 4 q^{13} - 24 q^{17} - 24 q^{29} + 20 q^{37} + 20 q^{49} + 24 q^{53} + 20 q^{61} - 48 q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times$$.

 $$n$$ $$1279$$ $$1793$$ $$2053$$ $$\chi(n)$$ $$1$$ $$1$$ $$\zeta_{8}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 0.707107 − 0.707107i −0.707107 + 0.707107i −0.707107 − 0.707107i 0.707107 + 0.707107i
0 0 0 0 0 1.41421i 0 0 0
577.2 0 0 0 0 0 1.41421i 0 0 0
1729.1 0 0 0 0 0 1.41421i 0 0 0
1729.2 0 0 0 0 0 1.41421i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.2.k.c 4
3.b odd 2 1 768.2.j.c yes 4
4.b odd 2 1 inner 2304.2.k.c 4
8.b even 2 1 2304.2.k.b 4
8.d odd 2 1 2304.2.k.b 4
12.b even 2 1 768.2.j.c yes 4
16.e even 4 1 2304.2.k.b 4
16.e even 4 1 inner 2304.2.k.c 4
16.f odd 4 1 2304.2.k.b 4
16.f odd 4 1 inner 2304.2.k.c 4
24.f even 2 1 768.2.j.b 4
24.h odd 2 1 768.2.j.b 4
32.g even 8 1 9216.2.a.n 2
32.g even 8 1 9216.2.a.o 2
32.h odd 8 1 9216.2.a.n 2
32.h odd 8 1 9216.2.a.o 2
48.i odd 4 1 768.2.j.b 4
48.i odd 4 1 768.2.j.c yes 4
48.k even 4 1 768.2.j.b 4
48.k even 4 1 768.2.j.c yes 4
96.o even 8 1 3072.2.a.a 2
96.o even 8 1 3072.2.a.g 2
96.o even 8 2 3072.2.d.a 4
96.p odd 8 1 3072.2.a.a 2
96.p odd 8 1 3072.2.a.g 2
96.p odd 8 2 3072.2.d.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
768.2.j.b 4 24.f even 2 1
768.2.j.b 4 24.h odd 2 1
768.2.j.b 4 48.i odd 4 1
768.2.j.b 4 48.k even 4 1
768.2.j.c yes 4 3.b odd 2 1
768.2.j.c yes 4 12.b even 2 1
768.2.j.c yes 4 48.i odd 4 1
768.2.j.c yes 4 48.k even 4 1
2304.2.k.b 4 8.b even 2 1
2304.2.k.b 4 8.d odd 2 1
2304.2.k.b 4 16.e even 4 1
2304.2.k.b 4 16.f odd 4 1
2304.2.k.c 4 1.a even 1 1 trivial
2304.2.k.c 4 4.b odd 2 1 inner
2304.2.k.c 4 16.e even 4 1 inner
2304.2.k.c 4 16.f odd 4 1 inner
3072.2.a.a 2 96.o even 8 1
3072.2.a.a 2 96.p odd 8 1
3072.2.a.g 2 96.o even 8 1
3072.2.a.g 2 96.p odd 8 1
3072.2.d.a 4 96.o even 8 2
3072.2.d.a 4 96.p odd 8 2
9216.2.a.n 2 32.g even 8 1
9216.2.a.n 2 32.h odd 8 1
9216.2.a.o 2 32.g even 8 1
9216.2.a.o 2 32.h odd 8 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2304, [\chi])$$:

 $$T_{5}$$ $$T_{7}^{2} + 2$$ $$T_{13}^{2} - 2 T_{13} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$T^{4}$$
$7$ $$( 2 + T^{2} )^{2}$$
$11$ $$T^{4}$$
$13$ $$( 2 - 2 T + T^{2} )^{2}$$
$17$ $$( 6 + T )^{4}$$
$19$ $$1296 + T^{4}$$
$23$ $$( 72 + T^{2} )^{2}$$
$29$ $$( 72 + 12 T + T^{2} )^{2}$$
$31$ $$( -2 + T^{2} )^{2}$$
$37$ $$( 50 - 10 T + T^{2} )^{2}$$
$41$ $$( 36 + T^{2} )^{2}$$
$43$ $$1296 + T^{4}$$
$47$ $$( -72 + T^{2} )^{2}$$
$53$ $$( 72 - 12 T + T^{2} )^{2}$$
$59$ $$T^{4}$$
$61$ $$( 50 - 10 T + T^{2} )^{2}$$
$67$ $$256 + T^{4}$$
$71$ $$( 72 + T^{2} )^{2}$$
$73$ $$T^{4}$$
$79$ $$( -2 + T^{2} )^{2}$$
$83$ $$20736 + T^{4}$$
$89$ $$( 36 + T^{2} )^{2}$$
$97$ $$( 12 + T )^{4}$$