Properties

Label 2304.2.k.a.577.1
Level $2304$
Weight $2$
Character 2304.577
Analytic conductor $18.398$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.3975326257\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 768)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2304.577
Dual form 2304.2.k.a.1729.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.00000 + 2.00000i) q^{5} -4.24264i q^{7} +O(q^{10})\) \(q+(-2.00000 + 2.00000i) q^{5} -4.24264i q^{7} +(-2.82843 + 2.82843i) q^{11} +(3.00000 + 3.00000i) q^{13} +6.00000 q^{17} +(-1.41421 - 1.41421i) q^{19} -2.82843i q^{23} -3.00000i q^{25} +(-4.00000 - 4.00000i) q^{29} -4.24264 q^{31} +(8.48528 + 8.48528i) q^{35} +(3.00000 - 3.00000i) q^{37} +10.0000i q^{41} +(-4.24264 + 4.24264i) q^{43} -2.82843 q^{47} -11.0000 q^{49} +(-4.00000 + 4.00000i) q^{53} -11.3137i q^{55} +(3.00000 + 3.00000i) q^{61} -12.0000 q^{65} +(2.82843 + 2.82843i) q^{67} +2.82843i q^{71} +16.0000i q^{73} +(12.0000 + 12.0000i) q^{77} +4.24264 q^{79} +(11.3137 + 11.3137i) q^{83} +(-12.0000 + 12.0000i) q^{85} +14.0000i q^{89} +(12.7279 - 12.7279i) q^{91} +5.65685 q^{95} -4.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 8q^{5} + O(q^{10}) \) \( 4q - 8q^{5} + 12q^{13} + 24q^{17} - 16q^{29} + 12q^{37} - 44q^{49} - 16q^{53} + 12q^{61} - 48q^{65} + 48q^{77} - 48q^{85} - 16q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 + 2.00000i −0.894427 + 0.894427i −0.994936 0.100509i \(-0.967953\pi\)
0.100509 + 0.994936i \(0.467953\pi\)
\(6\) 0 0
\(7\) 4.24264i 1.60357i −0.597614 0.801784i \(-0.703885\pi\)
0.597614 0.801784i \(-0.296115\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.82843 + 2.82843i −0.852803 + 0.852803i −0.990478 0.137675i \(-0.956037\pi\)
0.137675 + 0.990478i \(0.456037\pi\)
\(12\) 0 0
\(13\) 3.00000 + 3.00000i 0.832050 + 0.832050i 0.987797 0.155747i \(-0.0497784\pi\)
−0.155747 + 0.987797i \(0.549778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) −1.41421 1.41421i −0.324443 0.324443i 0.526026 0.850469i \(-0.323682\pi\)
−0.850469 + 0.526026i \(0.823682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843i 0.589768i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952810\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 4.00000i −0.742781 0.742781i 0.230331 0.973112i \(-0.426019\pi\)
−0.973112 + 0.230331i \(0.926019\pi\)
\(30\) 0 0
\(31\) −4.24264 −0.762001 −0.381000 0.924575i \(-0.624420\pi\)
−0.381000 + 0.924575i \(0.624420\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.48528 + 8.48528i 1.43427 + 1.43427i
\(36\) 0 0
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0000i 1.56174i 0.624695 + 0.780869i \(0.285223\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) −4.24264 + 4.24264i −0.646997 + 0.646997i −0.952266 0.305269i \(-0.901253\pi\)
0.305269 + 0.952266i \(0.401253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −11.0000 −1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.00000 + 4.00000i −0.549442 + 0.549442i −0.926279 0.376837i \(-0.877012\pi\)
0.376837 + 0.926279i \(0.377012\pi\)
\(54\) 0 0
\(55\) 11.3137i 1.52554i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 0 0
\(61\) 3.00000 + 3.00000i 0.384111 + 0.384111i 0.872581 0.488470i \(-0.162445\pi\)
−0.488470 + 0.872581i \(0.662445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 2.82843 + 2.82843i 0.345547 + 0.345547i 0.858448 0.512901i \(-0.171429\pi\)
−0.512901 + 0.858448i \(0.671429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.82843i 0.335673i 0.985815 + 0.167836i \(0.0536780\pi\)
−0.985815 + 0.167836i \(0.946322\pi\)
\(72\) 0 0
\(73\) 16.0000i 1.87266i 0.351123 + 0.936329i \(0.385800\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.0000 + 12.0000i 1.36753 + 1.36753i
\(78\) 0 0
\(79\) 4.24264 0.477334 0.238667 0.971101i \(-0.423290\pi\)
0.238667 + 0.971101i \(0.423290\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.3137 + 11.3137i 1.24184 + 1.24184i 0.959237 + 0.282604i \(0.0911983\pi\)
0.282604 + 0.959237i \(0.408802\pi\)
\(84\) 0 0
\(85\) −12.0000 + 12.0000i −1.30158 + 1.30158i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.0000i 1.48400i 0.670402 + 0.741999i \(0.266122\pi\)
−0.670402 + 0.741999i \(0.733878\pi\)
\(90\) 0 0
\(91\) 12.7279 12.7279i 1.33425 1.33425i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.65685 0.580381
\(96\) 0 0
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.00000 + 8.00000i −0.796030 + 0.796030i −0.982467 0.186437i \(-0.940306\pi\)
0.186437 + 0.982467i \(0.440306\pi\)
\(102\) 0 0
\(103\) 18.3848i 1.81151i 0.423806 + 0.905753i \(0.360694\pi\)
−0.423806 + 0.905753i \(0.639306\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.82843 + 2.82843i −0.273434 + 0.273434i −0.830481 0.557047i \(-0.811934\pi\)
0.557047 + 0.830481i \(0.311934\pi\)
\(108\) 0 0
\(109\) −7.00000 7.00000i −0.670478 0.670478i 0.287348 0.957826i \(-0.407226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 5.65685 + 5.65685i 0.527504 + 0.527504i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.4558i 2.33353i
\(120\) 0 0
\(121\) 5.00000i 0.454545i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.00000 4.00000i −0.357771 0.357771i
\(126\) 0 0
\(127\) −4.24264 −0.376473 −0.188237 0.982124i \(-0.560277\pi\)
−0.188237 + 0.982124i \(0.560277\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.1421 14.1421i −1.23560 1.23560i −0.961780 0.273824i \(-0.911711\pi\)
−0.273824 0.961780i \(-0.588289\pi\)
\(132\) 0 0
\(133\) −6.00000 + 6.00000i −0.520266 + 0.520266i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0000i 0.854358i −0.904167 0.427179i \(-0.859507\pi\)
0.904167 0.427179i \(-0.140493\pi\)
\(138\) 0 0
\(139\) −8.48528 + 8.48528i −0.719712 + 0.719712i −0.968546 0.248834i \(-0.919953\pi\)
0.248834 + 0.968546i \(0.419953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.9706 −1.41915
\(144\) 0 0
\(145\) 16.0000 1.32873
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 + 6.00000i −0.491539 + 0.491539i −0.908791 0.417252i \(-0.862993\pi\)
0.417252 + 0.908791i \(0.362993\pi\)
\(150\) 0 0
\(151\) 1.41421i 0.115087i −0.998343 0.0575435i \(-0.981673\pi\)
0.998343 0.0575435i \(-0.0183268\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.48528 8.48528i 0.681554 0.681554i
\(156\) 0 0
\(157\) 5.00000 + 5.00000i 0.399043 + 0.399043i 0.877896 0.478852i \(-0.158947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) 7.07107 + 7.07107i 0.553849 + 0.553849i 0.927549 0.373701i \(-0.121911\pi\)
−0.373701 + 0.927549i \(0.621911\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.3137i 0.875481i −0.899101 0.437741i \(-0.855779\pi\)
0.899101 0.437741i \(-0.144221\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.00000 + 2.00000i 0.152057 + 0.152057i 0.779036 0.626979i \(-0.215709\pi\)
−0.626979 + 0.779036i \(0.715709\pi\)
\(174\) 0 0
\(175\) −12.7279 −0.962140
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 0 0
\(181\) −1.00000 + 1.00000i −0.0743294 + 0.0743294i −0.743294 0.668965i \(-0.766738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000i 0.882258i
\(186\) 0 0
\(187\) −16.9706 + 16.9706i −1.24101 + 1.24101i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.6274 −1.63726 −0.818631 0.574320i \(-0.805267\pi\)
−0.818631 + 0.574320i \(0.805267\pi\)
\(192\) 0 0
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.00000 + 4.00000i −0.284988 + 0.284988i −0.835095 0.550106i \(-0.814587\pi\)
0.550106 + 0.835095i \(0.314587\pi\)
\(198\) 0 0
\(199\) 7.07107i 0.501255i −0.968084 0.250627i \(-0.919363\pi\)
0.968084 0.250627i \(-0.0806369\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −16.9706 + 16.9706i −1.19110 + 1.19110i
\(204\) 0 0
\(205\) −20.0000 20.0000i −1.39686 1.39686i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 8.48528 + 8.48528i 0.584151 + 0.584151i 0.936041 0.351890i \(-0.114461\pi\)
−0.351890 + 0.936041i \(0.614461\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.9706i 1.15738i
\(216\) 0 0
\(217\) 18.0000i 1.22192i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.0000 + 18.0000i 1.21081 + 1.21081i
\(222\) 0 0
\(223\) 21.2132 1.42054 0.710271 0.703929i \(-0.248573\pi\)
0.710271 + 0.703929i \(0.248573\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 11.0000 11.0000i 0.726900 0.726900i −0.243101 0.970001i \(-0.578165\pi\)
0.970001 + 0.243101i \(0.0781645\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 0 0
\(235\) 5.65685 5.65685i 0.369012 0.369012i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.3137 0.731823 0.365911 0.930650i \(-0.380757\pi\)
0.365911 + 0.930650i \(0.380757\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 22.0000 22.0000i 1.40553 1.40553i
\(246\) 0 0
\(247\) 8.48528i 0.539906i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.82843 2.82843i 0.178529 0.178529i −0.612185 0.790714i \(-0.709709\pi\)
0.790714 + 0.612185i \(0.209709\pi\)
\(252\) 0 0
\(253\) 8.00000 + 8.00000i 0.502956 + 0.502956i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) −12.7279 12.7279i −0.790875 0.790875i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.6274i 1.39527i 0.716455 + 0.697633i \(0.245763\pi\)
−0.716455 + 0.697633i \(0.754237\pi\)
\(264\) 0 0
\(265\) 16.0000i 0.982872i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(270\) 0 0
\(271\) 1.41421 0.0859074 0.0429537 0.999077i \(-0.486323\pi\)
0.0429537 + 0.999077i \(0.486323\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.48528 + 8.48528i 0.511682 + 0.511682i
\(276\) 0 0
\(277\) 1.00000 1.00000i 0.0600842 0.0600842i −0.676426 0.736510i \(-0.736472\pi\)
0.736510 + 0.676426i \(0.236472\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000i 0.357930i 0.983855 + 0.178965i \(0.0572749\pi\)
−0.983855 + 0.178965i \(0.942725\pi\)
\(282\) 0 0
\(283\) −2.82843 + 2.82843i −0.168133 + 0.168133i −0.786158 0.618026i \(-0.787933\pi\)
0.618026 + 0.786158i \(0.287933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 42.4264 2.50435
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.00000 + 4.00000i −0.233682 + 0.233682i −0.814228 0.580545i \(-0.802839\pi\)
0.580545 + 0.814228i \(0.302839\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.48528 8.48528i 0.490716 0.490716i
\(300\) 0 0
\(301\) 18.0000 + 18.0000i 1.03750 + 1.03750i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.0000 −0.687118
\(306\) 0 0
\(307\) 2.82843 + 2.82843i 0.161427 + 0.161427i 0.783199 0.621772i \(-0.213587\pi\)
−0.621772 + 0.783199i \(0.713587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.2843i 1.60385i 0.597422 + 0.801927i \(0.296192\pi\)
−0.597422 + 0.801927i \(0.703808\pi\)
\(312\) 0 0
\(313\) 26.0000i 1.46961i −0.678280 0.734803i \(-0.737274\pi\)
0.678280 0.734803i \(-0.262726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 12.0000i −0.673987 0.673987i 0.284646 0.958633i \(-0.408124\pi\)
−0.958633 + 0.284646i \(0.908124\pi\)
\(318\) 0 0
\(319\) 22.6274 1.26689
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.48528 8.48528i −0.472134 0.472134i
\(324\) 0 0
\(325\) 9.00000 9.00000i 0.499230 0.499230i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.0000i 0.661581i
\(330\) 0 0
\(331\) 2.82843 2.82843i 0.155464 0.155464i −0.625089 0.780553i \(-0.714937\pi\)
0.780553 + 0.625089i \(0.214937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.3137 −0.618134
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0000 12.0000i 0.649836 0.649836i
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.9706 16.9706i 0.911028 0.911028i −0.0853256 0.996353i \(-0.527193\pi\)
0.996353 + 0.0853256i \(0.0271930\pi\)
\(348\) 0 0
\(349\) −3.00000 3.00000i −0.160586 0.160586i 0.622240 0.782826i \(-0.286223\pi\)
−0.782826 + 0.622240i \(0.786223\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −5.65685 5.65685i −0.300235 0.300235i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.82843i 0.149279i 0.997211 + 0.0746393i \(0.0237806\pi\)
−0.997211 + 0.0746393i \(0.976219\pi\)
\(360\) 0 0
\(361\) 15.0000i 0.789474i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −32.0000 32.0000i −1.67496 1.67496i
\(366\) 0 0
\(367\) −18.3848 −0.959678 −0.479839 0.877357i \(-0.659305\pi\)
−0.479839 + 0.877357i \(0.659305\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.9706 + 16.9706i 0.881068 + 0.881068i
\(372\) 0 0
\(373\) 13.0000 13.0000i 0.673114 0.673114i −0.285318 0.958433i \(-0.592099\pi\)
0.958433 + 0.285318i \(0.0920993\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000i 1.23606i
\(378\) 0 0
\(379\) 26.8701 26.8701i 1.38022 1.38022i 0.536011 0.844211i \(-0.319930\pi\)
0.844211 0.536011i \(-0.180070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 28.2843 1.44526 0.722629 0.691236i \(-0.242933\pi\)
0.722629 + 0.691236i \(0.242933\pi\)
\(384\) 0 0
\(385\) −48.0000 −2.44631
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.00000 2.00000i 0.101404 0.101404i −0.654585 0.755989i \(-0.727156\pi\)
0.755989 + 0.654585i \(0.227156\pi\)
\(390\) 0 0
\(391\) 16.9706i 0.858238i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.48528 + 8.48528i −0.426941 + 0.426941i
\(396\) 0 0
\(397\) 23.0000 + 23.0000i 1.15434 + 1.15434i 0.985674 + 0.168663i \(0.0539450\pi\)
0.168663 + 0.985674i \(0.446055\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) −12.7279 12.7279i −0.634023 0.634023i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.9706i 0.841200i
\(408\) 0 0
\(409\) 28.0000i 1.38451i 0.721653 + 0.692255i \(0.243383\pi\)
−0.721653 + 0.692255i \(0.756617\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −45.2548 −2.22147
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.3137 11.3137i −0.552711 0.552711i 0.374511 0.927222i \(-0.377810\pi\)
−0.927222 + 0.374511i \(0.877810\pi\)
\(420\) 0 0
\(421\) −25.0000 + 25.0000i −1.21843 + 1.21843i −0.250242 + 0.968183i \(0.580510\pi\)
−0.968183 + 0.250242i \(0.919490\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.0000i 0.873128i
\(426\) 0 0
\(427\) 12.7279 12.7279i 0.615947 0.615947i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.7696 −1.77113 −0.885564 0.464518i \(-0.846227\pi\)
−0.885564 + 0.464518i \(0.846227\pi\)
\(432\) 0 0
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.00000 + 4.00000i −0.191346 + 0.191346i
\(438\) 0 0
\(439\) 1.41421i 0.0674967i 0.999430 + 0.0337484i \(0.0107445\pi\)
−0.999430 + 0.0337484i \(0.989256\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.9706 + 16.9706i −0.806296 + 0.806296i −0.984071 0.177775i \(-0.943110\pi\)
0.177775 + 0.984071i \(0.443110\pi\)
\(444\) 0 0
\(445\) −28.0000 28.0000i −1.32733 1.32733i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −28.2843 28.2843i −1.33185 1.33185i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 50.9117i 2.38678i
\(456\) 0 0
\(457\) 12.0000i 0.561336i 0.959805 + 0.280668i \(0.0905560\pi\)
−0.959805 + 0.280668i \(0.909444\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.00000 6.00000i −0.279448 0.279448i 0.553441 0.832889i \(-0.313315\pi\)
−0.832889 + 0.553441i \(0.813315\pi\)
\(462\) 0 0
\(463\) −12.7279 −0.591517 −0.295758 0.955263i \(-0.595572\pi\)
−0.295758 + 0.955263i \(0.595572\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.9706 16.9706i −0.785304 0.785304i 0.195416 0.980720i \(-0.437394\pi\)
−0.980720 + 0.195416i \(0.937394\pi\)
\(468\) 0 0
\(469\) 12.0000 12.0000i 0.554109 0.554109i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) −4.24264 + 4.24264i −0.194666 + 0.194666i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.4558 1.16311 0.581554 0.813508i \(-0.302445\pi\)
0.581554 + 0.813508i \(0.302445\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.00000 8.00000i 0.363261 0.363261i
\(486\) 0 0
\(487\) 43.8406i 1.98661i 0.115529 + 0.993304i \(0.463144\pi\)
−0.115529 + 0.993304i \(0.536856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.65685 + 5.65685i −0.255290 + 0.255290i −0.823135 0.567845i \(-0.807777\pi\)
0.567845 + 0.823135i \(0.307777\pi\)
\(492\) 0 0
\(493\) −24.0000 24.0000i −1.08091 1.08091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) −14.1421 14.1421i −0.633089 0.633089i 0.315753 0.948842i \(-0.397743\pi\)
−0.948842 + 0.315753i \(0.897743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.1421i 0.630567i 0.948998 + 0.315283i \(0.102100\pi\)
−0.948998 + 0.315283i \(0.897900\pi\)
\(504\) 0 0
\(505\) 32.0000i 1.42398i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.0000 16.0000i −0.709188 0.709188i 0.257177 0.966364i \(-0.417208\pi\)
−0.966364 + 0.257177i \(0.917208\pi\)
\(510\) 0 0
\(511\) 67.8823 3.00293
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −36.7696 36.7696i −1.62026 1.62026i
\(516\) 0 0
\(517\) 8.00000 8.00000i 0.351840 0.351840i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.0000i 0.963837i 0.876216 + 0.481919i \(0.160060\pi\)
−0.876216 + 0.481919i \(0.839940\pi\)
\(522\) 0 0
\(523\) −15.5563 + 15.5563i −0.680232 + 0.680232i −0.960052 0.279821i \(-0.909725\pi\)
0.279821 + 0.960052i \(0.409725\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.4558 −1.10887
\(528\) 0 0
\(529\) 15.0000 0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −30.0000 + 30.0000i −1.29944 + 1.29944i
\(534\) 0 0
\(535\) 11.3137i 0.489134i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 31.1127 31.1127i 1.34012 1.34012i
\(540\) 0 0
\(541\) 29.0000 + 29.0000i 1.24681 + 1.24681i 0.957122 + 0.289685i \(0.0935507\pi\)
0.289685 + 0.957122i \(0.406449\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 28.0000 1.19939
\(546\) 0 0
\(547\) −24.0416 24.0416i −1.02795 1.02795i −0.999598 0.0283478i \(-0.990975\pi\)
−0.0283478 0.999598i \(-0.509025\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.3137i 0.481980i
\(552\) 0 0
\(553\) 18.0000i 0.765438i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0000 + 14.0000i 0.593199 + 0.593199i 0.938494 0.345295i \(-0.112221\pi\)
−0.345295 + 0.938494i \(0.612221\pi\)
\(558\) 0 0
\(559\) −25.4558 −1.07667
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.82843 2.82843i −0.119204 0.119204i 0.644988 0.764192i \(-0.276862\pi\)
−0.764192 + 0.644988i \(0.776862\pi\)
\(564\) 0 0
\(565\) 12.0000 12.0000i 0.504844 0.504844i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0000i 0.754599i −0.926091 0.377300i \(-0.876853\pi\)
0.926091 0.377300i \(-0.123147\pi\)
\(570\) 0 0
\(571\) 14.1421 14.1421i 0.591830 0.591830i −0.346296 0.938125i \(-0.612561\pi\)
0.938125 + 0.346296i \(0.112561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.48528 −0.353861
\(576\) 0 0
\(577\) 4.00000 0.166522 0.0832611 0.996528i \(-0.473466\pi\)
0.0832611 + 0.996528i \(0.473466\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 48.0000 48.0000i 1.99138 1.99138i
\(582\) 0 0
\(583\) 22.6274i 0.937132i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.9706 16.9706i 0.700450 0.700450i −0.264057 0.964507i \(-0.585061\pi\)
0.964507 + 0.264057i \(0.0850607\pi\)
\(588\) 0 0
\(589\) 6.00000 + 6.00000i 0.247226 + 0.247226i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.0000 −0.574911 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(594\) 0 0
\(595\) 50.9117 + 50.9117i 2.08718 + 2.08718i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 48.0833i 1.96463i −0.187239 0.982314i \(-0.559954\pi\)
0.187239 0.982314i \(-0.440046\pi\)
\(600\) 0 0
\(601\) 28.0000i 1.14214i −0.820900 0.571072i \(-0.806528\pi\)
0.820900 0.571072i \(-0.193472\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.0000 + 10.0000i 0.406558 + 0.406558i
\(606\) 0 0
\(607\) −4.24264 −0.172203 −0.0861017 0.996286i \(-0.527441\pi\)
−0.0861017 + 0.996286i \(0.527441\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.48528 8.48528i −0.343278 0.343278i
\(612\) 0 0
\(613\) −13.0000 + 13.0000i −0.525065 + 0.525065i −0.919097 0.394032i \(-0.871080\pi\)
0.394032 + 0.919097i \(0.371080\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000i 0.885687i −0.896599 0.442843i \(-0.853970\pi\)
0.896599 0.442843i \(-0.146030\pi\)
\(618\) 0 0
\(619\) −25.4558 + 25.4558i −1.02316 + 1.02316i −0.0234313 + 0.999725i \(0.507459\pi\)
−0.999725 + 0.0234313i \(0.992541\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 59.3970 2.37969
\(624\) 0 0
\(625\) 31.0000 1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.0000 18.0000i 0.717707 0.717707i
\(630\) 0 0
\(631\) 35.3553i 1.40747i 0.710461 + 0.703737i \(0.248487\pi\)
−0.710461 + 0.703737i \(0.751513\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.48528 8.48528i 0.336728 0.336728i
\(636\) 0 0
\(637\) −33.0000 33.0000i −1.30751 1.30751i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 9.89949 + 9.89949i 0.390398 + 0.390398i 0.874829 0.484431i \(-0.160973\pi\)
−0.484431 + 0.874829i \(0.660973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.1421i 0.555985i 0.960583 + 0.277992i \(0.0896690\pi\)
−0.960583 + 0.277992i \(0.910331\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000 + 6.00000i 0.234798 + 0.234798i 0.814692 0.579894i \(-0.196906\pi\)
−0.579894 + 0.814692i \(0.696906\pi\)
\(654\) 0 0
\(655\) 56.5685 2.21032
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(660\) 0 0
\(661\) −9.00000 + 9.00000i −0.350059 + 0.350059i −0.860132 0.510072i \(-0.829619\pi\)
0.510072 + 0.860132i \(0.329619\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 24.0000i 0.930680i
\(666\) 0 0
\(667\) −11.3137 + 11.3137i −0.438069 + 0.438069i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.9706 −0.655141
\(672\) 0 0
\(673\) −40.0000 −1.54189 −0.770943 0.636904i \(-0.780215\pi\)
−0.770943 + 0.636904i \(0.780215\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.0000 26.0000i 0.999261 0.999261i −0.000738553 1.00000i \(-0.500235\pi\)
1.00000 0.000738553i \(0.000235089\pi\)
\(678\) 0 0
\(679\) 16.9706i 0.651270i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.9706 + 16.9706i −0.649361 + 0.649361i −0.952838 0.303478i \(-0.901852\pi\)
0.303478 + 0.952838i \(0.401852\pi\)
\(684\) 0 0
\(685\) 20.0000 + 20.0000i 0.764161 + 0.764161i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 15.5563 + 15.5563i 0.591791 + 0.591791i 0.938115 0.346324i \(-0.112570\pi\)
−0.346324 + 0.938115i \(0.612570\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 33.9411i 1.28746i
\(696\) 0 0
\(697\) 60.0000i 2.27266i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.00000 + 4.00000i 0.151078 + 0.151078i 0.778599 0.627521i \(-0.215931\pi\)
−0.627521 + 0.778599i \(0.715931\pi\)
\(702\) 0 0
\(703\) −8.48528 −0.320028
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 33.9411 + 33.9411i 1.27649 + 1.27649i
\(708\) 0 0
\(709\) 13.0000 13.0000i 0.488225 0.488225i −0.419521 0.907746i \(-0.637802\pi\)
0.907746 + 0.419521i \(0.137802\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0000i 0.449404i
\(714\) 0 0
\(715\) 33.9411 33.9411i 1.26933 1.26933i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.48528 0.316448 0.158224 0.987403i \(-0.449423\pi\)
0.158224 + 0.987403i \(0.449423\pi\)
\(720\) 0 0
\(721\) 78.0000 2.90487
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 + 12.0000i −0.445669 + 0.445669i
\(726\) 0 0
\(727\) 26.8701i 0.996555i −0.867018 0.498278i \(-0.833966\pi\)
0.867018 0.498278i \(-0.166034\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −25.4558 + 25.4558i −0.941518 + 0.941518i
\(732\) 0 0
\(733\) −25.0000 25.0000i −0.923396 0.923396i 0.0738717 0.997268i \(-0.476464\pi\)
−0.997268 + 0.0738717i \(0.976464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) 25.4558 + 25.4558i 0.936408 + 0.936408i 0.998096 0.0616872i \(-0.0196481\pi\)
−0.0616872 + 0.998096i \(0.519648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.6274i 0.830119i −0.909794 0.415060i \(-0.863761\pi\)
0.909794 0.415060i \(-0.136239\pi\)
\(744\) 0 0
\(745\) 24.0000i 0.879292i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.0000 + 12.0000i 0.438470 + 0.438470i
\(750\) 0 0
\(751\) 12.7279 0.464448 0.232224 0.972662i \(-0.425400\pi\)
0.232224 + 0.972662i \(0.425400\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.82843 + 2.82843i 0.102937 + 0.102937i
\(756\) 0 0
\(757\) 27.0000 27.0000i 0.981332 0.981332i −0.0184972 0.999829i \(-0.505888\pi\)
0.999829 + 0.0184972i \(0.00588818\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.0000i 1.23250i −0.787551 0.616250i \(-0.788651\pi\)
0.787551 0.616250i \(-0.211349\pi\)
\(762\) 0 0
\(763\) −29.6985 + 29.6985i −1.07516 + 1.07516i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.00000 4.00000i 0.143870 0.143870i −0.631503 0.775373i \(-0.717562\pi\)
0.775373 + 0.631503i \(0.217562\pi\)
\(774\) 0 0
\(775\) 12.7279i 0.457200i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.1421 14.1421i 0.506695 0.506695i
\(780\) 0 0
\(781\) −8.00000 8.00000i −0.286263 0.286263i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −20.0000 −0.713831
\(786\) 0 0
\(787\) −26.8701 26.8701i −0.957814 0.957814i 0.0413314 0.999145i \(-0.486840\pi\)
−0.999145 + 0.0413314i \(0.986840\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 25.4558i 0.905106i
\(792\) 0 0
\(793\) 18.0000i 0.639199i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.0000 + 22.0000i 0.779280 + 0.779280i 0.979708 0.200428i \(-0.0642334\pi\)
−0.200428 + 0.979708i \(0.564233\pi\)
\(798\) 0 0
\(799\) −16.9706 −0.600375
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −45.2548 45.2548i −1.59701 1.59701i
\(804\)