Properties

Label 2304.2.f.a.1151.4
Level $2304$
Weight $2$
Character 2304.1151
Analytic conductor $18.398$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.3975326257\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.4
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2304.1151
Dual form 2304.2.f.a.1151.3

$q$-expansion

\(f(q)\) \(=\) \(q-0.585786 q^{5} +0.828427i q^{7} +O(q^{10})\) \(q-0.585786 q^{5} +0.828427i q^{7} -2.82843i q^{11} -2.82843i q^{13} +2.58579i q^{17} +5.65685 q^{19} -6.82843 q^{23} -4.65685 q^{25} +3.41421 q^{29} -8.82843i q^{31} -0.485281i q^{35} +7.65685i q^{37} -5.41421i q^{41} -1.65685 q^{43} -4.48528 q^{47} +6.31371 q^{49} -9.07107 q^{53} +1.65685i q^{55} -13.6569i q^{59} -3.65685i q^{61} +1.65685i q^{65} +12.0000 q^{67} -12.4853 q^{71} -4.00000 q^{73} +2.34315 q^{77} -10.4853i q^{79} -10.8284i q^{83} -1.51472i q^{85} -3.75736i q^{89} +2.34315 q^{91} -3.31371 q^{95} +2.34315 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} + O(q^{10}) \) \( 4 q - 8 q^{5} - 16 q^{23} + 4 q^{25} + 8 q^{29} + 16 q^{43} + 16 q^{47} - 20 q^{49} - 8 q^{53} + 48 q^{67} - 16 q^{71} - 16 q^{73} + 32 q^{77} + 32 q^{91} + 32 q^{95} + 32 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.585786 −0.261972 −0.130986 0.991384i \(-0.541814\pi\)
−0.130986 + 0.991384i \(0.541814\pi\)
\(6\) 0 0
\(7\) 0.828427i 0.313116i 0.987669 + 0.156558i \(0.0500398\pi\)
−0.987669 + 0.156558i \(0.949960\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 2.82843i − 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) − 2.82843i − 0.784465i −0.919866 0.392232i \(-0.871703\pi\)
0.919866 0.392232i \(-0.128297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.58579i 0.627145i 0.949564 + 0.313573i \(0.101526\pi\)
−0.949564 + 0.313573i \(0.898474\pi\)
\(18\) 0 0
\(19\) 5.65685 1.29777 0.648886 0.760886i \(-0.275235\pi\)
0.648886 + 0.760886i \(0.275235\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.82843 −1.42383 −0.711913 0.702268i \(-0.752171\pi\)
−0.711913 + 0.702268i \(0.752171\pi\)
\(24\) 0 0
\(25\) −4.65685 −0.931371
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.41421 0.634004 0.317002 0.948425i \(-0.397324\pi\)
0.317002 + 0.948425i \(0.397324\pi\)
\(30\) 0 0
\(31\) − 8.82843i − 1.58563i −0.609461 0.792816i \(-0.708614\pi\)
0.609461 0.792816i \(-0.291386\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 0.485281i − 0.0820275i
\(36\) 0 0
\(37\) 7.65685i 1.25878i 0.777090 + 0.629390i \(0.216695\pi\)
−0.777090 + 0.629390i \(0.783305\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.41421i − 0.845558i −0.906233 0.422779i \(-0.861055\pi\)
0.906233 0.422779i \(-0.138945\pi\)
\(42\) 0 0
\(43\) −1.65685 −0.252668 −0.126334 0.991988i \(-0.540321\pi\)
−0.126334 + 0.991988i \(0.540321\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.48528 −0.654246 −0.327123 0.944982i \(-0.606079\pi\)
−0.327123 + 0.944982i \(0.606079\pi\)
\(48\) 0 0
\(49\) 6.31371 0.901958
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.07107 −1.24601 −0.623003 0.782219i \(-0.714088\pi\)
−0.623003 + 0.782219i \(0.714088\pi\)
\(54\) 0 0
\(55\) 1.65685i 0.223410i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 13.6569i − 1.77797i −0.457935 0.888985i \(-0.651411\pi\)
0.457935 0.888985i \(-0.348589\pi\)
\(60\) 0 0
\(61\) − 3.65685i − 0.468212i −0.972211 0.234106i \(-0.924784\pi\)
0.972211 0.234106i \(-0.0752163\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.65685i 0.205507i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.4853 −1.48173 −0.740865 0.671654i \(-0.765584\pi\)
−0.740865 + 0.671654i \(0.765584\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.34315 0.267026
\(78\) 0 0
\(79\) − 10.4853i − 1.17969i −0.807518 0.589843i \(-0.799190\pi\)
0.807518 0.589843i \(-0.200810\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 10.8284i − 1.18857i −0.804253 0.594287i \(-0.797434\pi\)
0.804253 0.594287i \(-0.202566\pi\)
\(84\) 0 0
\(85\) − 1.51472i − 0.164294i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.75736i − 0.398279i −0.979971 0.199140i \(-0.936185\pi\)
0.979971 0.199140i \(-0.0638147\pi\)
\(90\) 0 0
\(91\) 2.34315 0.245628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.31371 −0.339979
\(96\) 0 0
\(97\) 2.34315 0.237910 0.118955 0.992900i \(-0.462046\pi\)
0.118955 + 0.992900i \(0.462046\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.7279 1.46548 0.732742 0.680507i \(-0.238240\pi\)
0.732742 + 0.680507i \(0.238240\pi\)
\(102\) 0 0
\(103\) − 8.82843i − 0.869891i −0.900457 0.434945i \(-0.856768\pi\)
0.900457 0.434945i \(-0.143232\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 11.3137i − 1.09374i −0.837218 0.546869i \(-0.815820\pi\)
0.837218 0.546869i \(-0.184180\pi\)
\(108\) 0 0
\(109\) − 5.17157i − 0.495347i −0.968844 0.247673i \(-0.920334\pi\)
0.968844 0.247673i \(-0.0796660\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.75736i 0.353463i 0.984259 + 0.176731i \(0.0565524\pi\)
−0.984259 + 0.176731i \(0.943448\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.14214 −0.196369
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) − 0.828427i − 0.0735110i −0.999324 0.0367555i \(-0.988298\pi\)
0.999324 0.0367555i \(-0.0117023\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 5.65685i − 0.494242i −0.968985 0.247121i \(-0.920516\pi\)
0.968985 0.247121i \(-0.0794845\pi\)
\(132\) 0 0
\(133\) 4.68629i 0.406353i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.4142i 1.14605i 0.819537 + 0.573027i \(0.194231\pi\)
−0.819537 + 0.573027i \(0.805769\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.7279 −1.53425 −0.767126 0.641497i \(-0.778314\pi\)
−0.767126 + 0.641497i \(0.778314\pi\)
\(150\) 0 0
\(151\) − 10.4853i − 0.853280i −0.904422 0.426640i \(-0.859697\pi\)
0.904422 0.426640i \(-0.140303\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.17157i 0.415391i
\(156\) 0 0
\(157\) 11.6569i 0.930318i 0.885227 + 0.465159i \(0.154003\pi\)
−0.885227 + 0.465159i \(0.845997\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 5.65685i − 0.445823i
\(162\) 0 0
\(163\) −9.65685 −0.756383 −0.378192 0.925727i \(-0.623454\pi\)
−0.378192 + 0.925727i \(0.623454\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.65685 −0.437741 −0.218870 0.975754i \(-0.570237\pi\)
−0.218870 + 0.975754i \(0.570237\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −23.4142 −1.78015 −0.890075 0.455814i \(-0.849348\pi\)
−0.890075 + 0.455814i \(0.849348\pi\)
\(174\) 0 0
\(175\) − 3.85786i − 0.291627i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 3.31371i − 0.247678i −0.992302 0.123839i \(-0.960479\pi\)
0.992302 0.123839i \(-0.0395207\pi\)
\(180\) 0 0
\(181\) − 22.1421i − 1.64581i −0.568178 0.822906i \(-0.692351\pi\)
0.568178 0.822906i \(-0.307649\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 4.48528i − 0.329764i
\(186\) 0 0
\(187\) 7.31371 0.534831
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.6569 −1.56703 −0.783517 0.621370i \(-0.786577\pi\)
−0.783517 + 0.621370i \(0.786577\pi\)
\(192\) 0 0
\(193\) −17.3137 −1.24627 −0.623134 0.782115i \(-0.714141\pi\)
−0.623134 + 0.782115i \(0.714141\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.3848 1.45236 0.726178 0.687507i \(-0.241295\pi\)
0.726178 + 0.687507i \(0.241295\pi\)
\(198\) 0 0
\(199\) − 0.828427i − 0.0587256i −0.999569 0.0293628i \(-0.990652\pi\)
0.999569 0.0293628i \(-0.00934782\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.82843i 0.198517i
\(204\) 0 0
\(205\) 3.17157i 0.221512i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 16.0000i − 1.10674i
\(210\) 0 0
\(211\) 0.686292 0.0472463 0.0236231 0.999721i \(-0.492480\pi\)
0.0236231 + 0.999721i \(0.492480\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.970563 0.0661918
\(216\) 0 0
\(217\) 7.31371 0.496487
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.31371 0.491973
\(222\) 0 0
\(223\) 21.7990i 1.45977i 0.683571 + 0.729884i \(0.260426\pi\)
−0.683571 + 0.729884i \(0.739574\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 21.1716i − 1.40521i −0.711582 0.702603i \(-0.752021\pi\)
0.711582 0.702603i \(-0.247979\pi\)
\(228\) 0 0
\(229\) 10.8284i 0.715563i 0.933805 + 0.357781i \(0.116467\pi\)
−0.933805 + 0.357781i \(0.883533\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 1.89949i − 0.124440i −0.998062 0.0622200i \(-0.980182\pi\)
0.998062 0.0622200i \(-0.0198181\pi\)
\(234\) 0 0
\(235\) 2.62742 0.171394
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −12.9706 −0.835507 −0.417754 0.908560i \(-0.637183\pi\)
−0.417754 + 0.908560i \(0.637183\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.69848 −0.236288
\(246\) 0 0
\(247\) − 16.0000i − 1.01806i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.51472i 0.474325i 0.971470 + 0.237162i \(0.0762174\pi\)
−0.971470 + 0.237162i \(0.923783\pi\)
\(252\) 0 0
\(253\) 19.3137i 1.21424i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.89949i 0.617514i 0.951141 + 0.308757i \(0.0999129\pi\)
−0.951141 + 0.308757i \(0.900087\pi\)
\(258\) 0 0
\(259\) −6.34315 −0.394144
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 29.6569 1.82872 0.914360 0.404902i \(-0.132694\pi\)
0.914360 + 0.404902i \(0.132694\pi\)
\(264\) 0 0
\(265\) 5.31371 0.326419
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.38478 −0.267345 −0.133672 0.991026i \(-0.542677\pi\)
−0.133672 + 0.991026i \(0.542677\pi\)
\(270\) 0 0
\(271\) 18.4853i 1.12290i 0.827510 + 0.561450i \(0.189756\pi\)
−0.827510 + 0.561450i \(0.810244\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.1716i 0.794276i
\(276\) 0 0
\(277\) − 26.8284i − 1.61196i −0.591940 0.805982i \(-0.701638\pi\)
0.591940 0.805982i \(-0.298362\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.8995i 1.54503i 0.634994 + 0.772517i \(0.281003\pi\)
−0.634994 + 0.772517i \(0.718997\pi\)
\(282\) 0 0
\(283\) 19.3137 1.14808 0.574040 0.818827i \(-0.305375\pi\)
0.574040 + 0.818827i \(0.305375\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.48528 0.264758
\(288\) 0 0
\(289\) 10.3137 0.606689
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.8701 1.45292 0.726462 0.687206i \(-0.241163\pi\)
0.726462 + 0.687206i \(0.241163\pi\)
\(294\) 0 0
\(295\) 8.00000i 0.465778i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 19.3137i 1.11694i
\(300\) 0 0
\(301\) − 1.37258i − 0.0791144i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.14214i 0.122658i
\(306\) 0 0
\(307\) −23.3137 −1.33058 −0.665292 0.746583i \(-0.731693\pi\)
−0.665292 + 0.746583i \(0.731693\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.34315 0.132868 0.0664338 0.997791i \(-0.478838\pi\)
0.0664338 + 0.997791i \(0.478838\pi\)
\(312\) 0 0
\(313\) 13.3137 0.752535 0.376268 0.926511i \(-0.377207\pi\)
0.376268 + 0.926511i \(0.377207\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.75736 −0.323366 −0.161683 0.986843i \(-0.551692\pi\)
−0.161683 + 0.986843i \(0.551692\pi\)
\(318\) 0 0
\(319\) − 9.65685i − 0.540680i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14.6274i 0.813891i
\(324\) 0 0
\(325\) 13.1716i 0.730627i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 3.71573i − 0.204855i
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.02944 −0.384059
\(336\) 0 0
\(337\) 0.686292 0.0373847 0.0186923 0.999825i \(-0.494050\pi\)
0.0186923 + 0.999825i \(0.494050\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −24.9706 −1.35223
\(342\) 0 0
\(343\) 11.0294i 0.595534i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.485281i 0.0260513i 0.999915 + 0.0130256i \(0.00414631\pi\)
−0.999915 + 0.0130256i \(0.995854\pi\)
\(348\) 0 0
\(349\) − 0.343146i − 0.0183682i −0.999958 0.00918409i \(-0.997077\pi\)
0.999958 0.00918409i \(-0.00292343\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 34.8701i − 1.85595i −0.372648 0.927973i \(-0.621550\pi\)
0.372648 0.927973i \(-0.378450\pi\)
\(354\) 0 0
\(355\) 7.31371 0.388171
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.51472 −0.185500 −0.0927499 0.995689i \(-0.529566\pi\)
−0.0927499 + 0.995689i \(0.529566\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.34315 0.122646
\(366\) 0 0
\(367\) 15.1716i 0.791950i 0.918261 + 0.395975i \(0.129593\pi\)
−0.918261 + 0.395975i \(0.870407\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 7.51472i − 0.390145i
\(372\) 0 0
\(373\) − 18.9706i − 0.982259i −0.871087 0.491129i \(-0.836584\pi\)
0.871087 0.491129i \(-0.163416\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 9.65685i − 0.497353i
\(378\) 0 0
\(379\) −36.2843 −1.86380 −0.931899 0.362718i \(-0.881849\pi\)
−0.931899 + 0.362718i \(0.881849\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 30.6274 1.56499 0.782494 0.622658i \(-0.213947\pi\)
0.782494 + 0.622658i \(0.213947\pi\)
\(384\) 0 0
\(385\) −1.37258 −0.0699533
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 33.5563 1.70137 0.850687 0.525672i \(-0.176186\pi\)
0.850687 + 0.525672i \(0.176186\pi\)
\(390\) 0 0
\(391\) − 17.6569i − 0.892946i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.14214i 0.309044i
\(396\) 0 0
\(397\) − 14.9706i − 0.751351i −0.926751 0.375676i \(-0.877411\pi\)
0.926751 0.375676i \(-0.122589\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.5858i 0.528629i 0.964437 + 0.264314i \(0.0851457\pi\)
−0.964437 + 0.264314i \(0.914854\pi\)
\(402\) 0 0
\(403\) −24.9706 −1.24387
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.6569 1.07349
\(408\) 0 0
\(409\) −21.6569 −1.07086 −0.535431 0.844579i \(-0.679851\pi\)
−0.535431 + 0.844579i \(0.679851\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.3137 0.556711
\(414\) 0 0
\(415\) 6.34315i 0.311373i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 27.7990i 1.35807i 0.734106 + 0.679035i \(0.237601\pi\)
−0.734106 + 0.679035i \(0.762399\pi\)
\(420\) 0 0
\(421\) 24.4853i 1.19334i 0.802487 + 0.596670i \(0.203510\pi\)
−0.802487 + 0.596670i \(0.796490\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 12.0416i − 0.584105i
\(426\) 0 0
\(427\) 3.02944 0.146605
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.5147 0.554644 0.277322 0.960777i \(-0.410553\pi\)
0.277322 + 0.960777i \(0.410553\pi\)
\(432\) 0 0
\(433\) −16.6274 −0.799063 −0.399531 0.916720i \(-0.630827\pi\)
−0.399531 + 0.916720i \(0.630827\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −38.6274 −1.84780
\(438\) 0 0
\(439\) 36.1421i 1.72497i 0.506083 + 0.862485i \(0.331093\pi\)
−0.506083 + 0.862485i \(0.668907\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 33.4558i 1.58954i 0.606914 + 0.794768i \(0.292407\pi\)
−0.606914 + 0.794768i \(0.707593\pi\)
\(444\) 0 0
\(445\) 2.20101i 0.104338i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.7279i 1.92207i 0.276428 + 0.961035i \(0.410849\pi\)
−0.276428 + 0.961035i \(0.589151\pi\)
\(450\) 0 0
\(451\) −15.3137 −0.721094
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.37258 −0.0643477
\(456\) 0 0
\(457\) −24.9706 −1.16807 −0.584037 0.811727i \(-0.698528\pi\)
−0.584037 + 0.811727i \(0.698528\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.8995 −1.29941 −0.649705 0.760187i \(-0.725107\pi\)
−0.649705 + 0.760187i \(0.725107\pi\)
\(462\) 0 0
\(463\) − 5.79899i − 0.269502i −0.990879 0.134751i \(-0.956977\pi\)
0.990879 0.134751i \(-0.0430234\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.1421i 1.02462i 0.858802 + 0.512308i \(0.171209\pi\)
−0.858802 + 0.512308i \(0.828791\pi\)
\(468\) 0 0
\(469\) 9.94113i 0.459039i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.68629i 0.215476i
\(474\) 0 0
\(475\) −26.3431 −1.20871
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.8284 0.677528 0.338764 0.940871i \(-0.389991\pi\)
0.338764 + 0.940871i \(0.389991\pi\)
\(480\) 0 0
\(481\) 21.6569 0.987468
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.37258 −0.0623258
\(486\) 0 0
\(487\) 23.1716i 1.05000i 0.851101 + 0.525002i \(0.175935\pi\)
−0.851101 + 0.525002i \(0.824065\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 12.6863i − 0.572524i −0.958151 0.286262i \(-0.907587\pi\)
0.958151 0.286262i \(-0.0924128\pi\)
\(492\) 0 0
\(493\) 8.82843i 0.397612i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 10.3431i − 0.463953i
\(498\) 0 0
\(499\) 38.6274 1.72920 0.864600 0.502460i \(-0.167572\pi\)
0.864600 + 0.502460i \(0.167572\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.7990 1.06114 0.530572 0.847640i \(-0.321977\pi\)
0.530572 + 0.847640i \(0.321977\pi\)
\(504\) 0 0
\(505\) −8.62742 −0.383915
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.7279 1.71658 0.858292 0.513161i \(-0.171526\pi\)
0.858292 + 0.513161i \(0.171526\pi\)
\(510\) 0 0
\(511\) − 3.31371i − 0.146590i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.17157i 0.227887i
\(516\) 0 0
\(517\) 12.6863i 0.557942i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.0711i 0.485032i 0.970147 + 0.242516i \(0.0779727\pi\)
−0.970147 + 0.242516i \(0.922027\pi\)
\(522\) 0 0
\(523\) −34.3431 −1.50172 −0.750860 0.660461i \(-0.770361\pi\)
−0.750860 + 0.660461i \(0.770361\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.8284 0.994422
\(528\) 0 0
\(529\) 23.6274 1.02728
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.3137 −0.663310
\(534\) 0 0
\(535\) 6.62742i 0.286528i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 17.8579i − 0.769193i
\(540\) 0 0
\(541\) − 3.79899i − 0.163331i −0.996660 0.0816657i \(-0.973976\pi\)
0.996660 0.0816657i \(-0.0260240\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.02944i 0.129767i
\(546\) 0 0
\(547\) 1.65685 0.0708420 0.0354210 0.999372i \(-0.488723\pi\)
0.0354210 + 0.999372i \(0.488723\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.3137 0.822792
\(552\) 0 0
\(553\) 8.68629 0.369379
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.07107 0.214868 0.107434 0.994212i \(-0.465737\pi\)
0.107434 + 0.994212i \(0.465737\pi\)
\(558\) 0 0
\(559\) 4.68629i 0.198209i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.4558i 1.07284i 0.843952 + 0.536418i \(0.180223\pi\)
−0.843952 + 0.536418i \(0.819777\pi\)
\(564\) 0 0
\(565\) − 2.20101i − 0.0925972i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 21.8995i − 0.918075i −0.888417 0.459037i \(-0.848194\pi\)
0.888417 0.459037i \(-0.151806\pi\)
\(570\) 0 0
\(571\) 24.0000 1.00437 0.502184 0.864761i \(-0.332530\pi\)
0.502184 + 0.864761i \(0.332530\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 31.7990 1.32611
\(576\) 0 0
\(577\) −6.68629 −0.278354 −0.139177 0.990268i \(-0.544446\pi\)
−0.139177 + 0.990268i \(0.544446\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.97056 0.372162
\(582\) 0 0
\(583\) 25.6569i 1.06260i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.3431i 0.757103i 0.925580 + 0.378551i \(0.123578\pi\)
−0.925580 + 0.378551i \(0.876422\pi\)
\(588\) 0 0
\(589\) − 49.9411i − 2.05779i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.928932i 0.0381467i 0.999818 + 0.0190733i \(0.00607160\pi\)
−0.999818 + 0.0190733i \(0.993928\pi\)
\(594\) 0 0
\(595\) 1.25483 0.0514432
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.5147 −1.12422 −0.562110 0.827062i \(-0.690010\pi\)
−0.562110 + 0.827062i \(0.690010\pi\)
\(600\) 0 0
\(601\) 1.31371 0.0535873 0.0267936 0.999641i \(-0.491470\pi\)
0.0267936 + 0.999641i \(0.491470\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.75736 −0.0714468
\(606\) 0 0
\(607\) − 24.8284i − 1.00775i −0.863775 0.503877i \(-0.831906\pi\)
0.863775 0.503877i \(-0.168094\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.6863i 0.513232i
\(612\) 0 0
\(613\) 0.343146i 0.0138595i 0.999976 + 0.00692976i \(0.00220583\pi\)
−0.999976 + 0.00692976i \(0.997794\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 33.4142i − 1.34521i −0.740004 0.672603i \(-0.765176\pi\)
0.740004 0.672603i \(-0.234824\pi\)
\(618\) 0 0
\(619\) −33.9411 −1.36421 −0.682105 0.731255i \(-0.738935\pi\)
−0.682105 + 0.731255i \(0.738935\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.11270 0.124708
\(624\) 0 0
\(625\) 19.9706 0.798823
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.7990 −0.789437
\(630\) 0 0
\(631\) 18.4853i 0.735887i 0.929848 + 0.367944i \(0.119938\pi\)
−0.929848 + 0.367944i \(0.880062\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.485281i 0.0192578i
\(636\) 0 0
\(637\) − 17.8579i − 0.707554i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.8701i 0.587332i 0.955908 + 0.293666i \(0.0948753\pi\)
−0.955908 + 0.293666i \(0.905125\pi\)
\(642\) 0 0
\(643\) −9.65685 −0.380829 −0.190415 0.981704i \(-0.560983\pi\)
−0.190415 + 0.981704i \(0.560983\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.7990 −0.621122 −0.310561 0.950553i \(-0.600517\pi\)
−0.310561 + 0.950553i \(0.600517\pi\)
\(648\) 0 0
\(649\) −38.6274 −1.51626
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.27208 0.206312 0.103156 0.994665i \(-0.467106\pi\)
0.103156 + 0.994665i \(0.467106\pi\)
\(654\) 0 0
\(655\) 3.31371i 0.129477i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.97056i 0.349444i 0.984618 + 0.174722i \(0.0559026\pi\)
−0.984618 + 0.174722i \(0.944097\pi\)
\(660\) 0 0
\(661\) − 3.65685i − 0.142235i −0.997468 0.0711176i \(-0.977343\pi\)
0.997468 0.0711176i \(-0.0226566\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 2.74517i − 0.106453i
\(666\) 0 0
\(667\) −23.3137 −0.902710
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.3431 −0.399293
\(672\) 0 0
\(673\) 18.0000 0.693849 0.346925 0.937893i \(-0.387226\pi\)
0.346925 + 0.937893i \(0.387226\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.7279 0.719773 0.359886 0.932996i \(-0.382815\pi\)
0.359886 + 0.932996i \(0.382815\pi\)
\(678\) 0 0
\(679\) 1.94113i 0.0744936i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.1421i 0.847245i 0.905839 + 0.423623i \(0.139242\pi\)
−0.905839 + 0.423623i \(0.860758\pi\)
\(684\) 0 0
\(685\) − 7.85786i − 0.300234i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 25.6569i 0.977448i
\(690\) 0 0
\(691\) −3.02944 −0.115245 −0.0576226 0.998338i \(-0.518352\pi\)
−0.0576226 + 0.998338i \(0.518352\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.02944 −0.266642
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.7574 0.519608 0.259804 0.965661i \(-0.416342\pi\)
0.259804 + 0.965661i \(0.416342\pi\)
\(702\) 0 0
\(703\) 43.3137i 1.63361i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.2010i 0.458866i
\(708\) 0 0
\(709\) 48.0833i 1.80580i 0.429846 + 0.902902i \(0.358568\pi\)
−0.429846 + 0.902902i \(0.641432\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 60.2843i 2.25766i
\(714\) 0 0
\(715\) 4.68629 0.175257
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 28.4853 1.06232 0.531161 0.847271i \(-0.321756\pi\)
0.531161 + 0.847271i \(0.321756\pi\)
\(720\) 0 0
\(721\) 7.31371 0.272377
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −15.8995 −0.590492
\(726\) 0 0
\(727\) − 8.82843i − 0.327428i −0.986508 0.163714i \(-0.947653\pi\)
0.986508 0.163714i \(-0.0523475\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 4.28427i − 0.158459i
\(732\) 0 0
\(733\) 24.4853i 0.904385i 0.891920 + 0.452192i \(0.149358\pi\)
−0.891920 + 0.452192i \(0.850642\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 33.9411i − 1.25024i
\(738\) 0 0
\(739\) 8.00000 0.294285 0.147142 0.989115i \(-0.452992\pi\)
0.147142 + 0.989115i \(0.452992\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.9706 0.622590 0.311295 0.950313i \(-0.399237\pi\)
0.311295 + 0.950313i \(0.399237\pi\)
\(744\) 0 0
\(745\) 10.9706 0.401930
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.37258 0.342467
\(750\) 0 0
\(751\) − 40.8284i − 1.48985i −0.667148 0.744925i \(-0.732485\pi\)
0.667148 0.744925i \(-0.267515\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 6.14214i 0.223535i
\(756\) 0 0
\(757\) − 0.485281i − 0.0176379i −0.999961 0.00881893i \(-0.997193\pi\)
0.999961 0.00881893i \(-0.00280719\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 25.6985i − 0.931569i −0.884898 0.465785i \(-0.845772\pi\)
0.884898 0.465785i \(-0.154228\pi\)
\(762\) 0 0
\(763\) 4.28427 0.155101
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −38.6274 −1.39476
\(768\) 0 0
\(769\) −21.3137 −0.768592 −0.384296 0.923210i \(-0.625556\pi\)
−0.384296 + 0.923210i \(0.625556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.5858 0.452679 0.226340 0.974048i \(-0.427324\pi\)
0.226340 + 0.974048i \(0.427324\pi\)
\(774\) 0 0
\(775\) 41.1127i 1.47681i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 30.6274i − 1.09734i
\(780\) 0 0
\(781\) 35.3137i 1.26362i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 6.82843i − 0.243717i
\(786\) 0 0
\(787\) 26.3431 0.939032 0.469516 0.882924i \(-0.344428\pi\)
0.469516 + 0.882924i \(0.344428\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.11270 −0.110675
\(792\) 0 0
\(793\) −10.3431 −0.367296
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.0711 −0.463001 −0.231500 0.972835i \(-0.574363\pi\)
−0.231500 + 0.972835i \(0.574363\pi\)
\(798\) 0 0
\(799\) − 11.5980i − 0.410307i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11.3137i 0.399252i
\(804\) 0 0
\(805\) 3.31371i 0.116793i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 42.6690i − 1.50016i −0.661345 0.750082i \(-0.730014\pi\)
0.661345 0.750082i \(-0.269986\pi\)
\(810\) 0 0
\(811\) 31.5980 1.10956 0.554778 0.831999i \(-0.312803\pi\)
0.554778 + 0.831999i \(0.312803\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.65685 0.198151
\(816\) 0 0
\(817\) −9.37258 −0.327905
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.4142 0.398359 0.199179 0.979963i \(-0.436172\pi\)
0.199179 + 0.979963i \(0.436172\pi\)
\(822\) 0 0
\(823\) − 52.4264i − 1.82747i −0.406311 0.913735i \(-0.633185\pi\)
0.406311 0.913735i \(-0.366815\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 15.0294i − 0.522625i −0.965254 0.261312i \(-0.915845\pi\)
0.965254 0.261312i \(-0.0841553\pi\)
\(828\) 0 0
\(829\) 4.20101i 0.145907i 0.997335 + 0.0729536i \(0.0232425\pi\)
−0.997335 + 0.0729536i \(0.976758\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16.3259i 0.565659i
\(834\) 0 0
\(835\) 3.31371 0.114676
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3.51472 −0.121342 −0.0606708 0.998158i \(-0.519324\pi\)
−0.0606708 + 0.998158i \(0.519324\pi\)
\(840\) 0 0
\(841\) −17.3431 −0.598040
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.92893 −0.100758
\(846\) 0 0
\(847\) 2.48528i 0.0853953i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 52.2843i − 1.79228i
\(852\) 0 0
\(853\) − 42.2843i − 1.44779i −0.689912 0.723893i \(-0.742351\pi\)
0.689912 0.723893i \(-0.257649\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.8995i 0.748072i 0.927414 + 0.374036i \(0.122026\pi\)
−0.927414 + 0.374036i \(0.877974\pi\)
\(858\) 0 0
\(859\) −1.65685 −0.0565311 −0.0282656 0.999600i \(-0.508998\pi\)
−0.0282656 + 0.999600i \(0.508998\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.970563 −0.0330383 −0.0165192 0.999864i \(-0.505258\pi\)
−0.0165192 + 0.999864i \(0.505258\pi\)
\(864\) 0 0
\(865\) 13.7157 0.466349
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −29.6569 −1.00604
\(870\) 0 0
\(871\) − 33.9411i − 1.15005i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.68629i 0.158426i
\(876\) 0 0
\(877\) − 6.97056i − 0.235379i −0.993050 0.117690i \(-0.962451\pi\)
0.993050 0.117690i \(-0.0375488\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 12.7279i − 0.428815i −0.976744 0.214407i \(-0.931218\pi\)
0.976744 0.214407i \(-0.0687820\pi\)
\(882\) 0 0
\(883\) −40.2843 −1.35567 −0.677837 0.735212i \(-0.737082\pi\)
−0.677837 + 0.735212i \(0.737082\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.34315 −0.0786751 −0.0393376 0.999226i \(-0.512525\pi\)
−0.0393376 + 0.999226i \(0.512525\pi\)
\(888\) 0 0
\(889\) 0.686292 0.0230175
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −25.3726 −0.849061
\(894\) 0 0
\(895\) 1.94113i 0.0648847i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 30.1421i − 1.00530i
\(900\) 0 0
\(901\) − 23.4558i − 0.781427i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.9706i 0.431156i
\(906\) 0 0
\(907\) 14.3431 0.476256 0.238128 0.971234i \(-0.423466\pi\)
0.238128 + 0.971234i \(0.423466\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.5980 −0.781836 −0.390918 0.920426i \(-0.627842\pi\)
−0.390918 + 0.920426i \(0.627842\pi\)
\(912\) 0 0
\(913\) −30.6274 −1.01362
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.68629 0.154755
\(918\) 0 0
\(919\) 23.4558i 0.773737i 0.922135 + 0.386868i \(0.126443\pi\)
−0.922135 + 0.386868i \(0.873557\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 35.3137i 1.16236i
\(924\) 0 0
\(925\) − 35.6569i − 1.17239i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 16.7279i − 0.548825i −0.961612 0.274413i \(-0.911517\pi\)
0.961612 0.274413i \(-0.0884834\pi\)
\(930\) 0 0
\(931\) 35.7157 1.17054
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.28427 −0.140111
\(936\) 0 0
\(937\) 56.6274 1.84994 0.924969 0.380044i \(-0.124091\pi\)
0.924969 + 0.380044i \(0.124091\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −21.2721 −0.693450 −0.346725 0.937967i \(-0.612706\pi\)
−0.346725 + 0.937967i \(0.612706\pi\)
\(942\) 0 0
\(943\) 36.9706i 1.20393i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 31.5980i − 1.02680i −0.858151 0.513398i \(-0.828386\pi\)
0.858151 0.513398i \(-0.171614\pi\)
\(948\) 0 0
\(949\) 11.3137i 0.367259i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.44365i 0.143944i 0.997407 + 0.0719720i \(0.0229292\pi\)
−0.997407 + 0.0719720i \(0.977071\pi\)
\(954\) 0 0
\(955\) 12.6863 0.410519
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11.1127 −0.358848
\(960\) 0 0
\(961\) −46.9411 −1.51423
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.1421 0.326487
\(966\) 0 0
\(967\) − 46.0833i − 1.48194i −0.671539 0.740969i \(-0.734367\pi\)
0.671539 0.740969i \(-0.265633\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 21.1716i − 0.679428i −0.940529 0.339714i \(-0.889670\pi\)
0.940529 0.339714i \(-0.110330\pi\)
\(972\) 0 0
\(973\) 9.94113i 0.318698i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 12.5269i − 0.400771i −0.979717 0.200386i \(-0.935780\pi\)
0.979717 0.200386i \(-0.0642195\pi\)
\(978\) 0 0
\(979\) −10.6274 −0.339654
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34.3431 1.09538 0.547688 0.836683i \(-0.315508\pi\)
0.547688 + 0.836683i \(0.315508\pi\)
\(984\) 0 0
\(985\) −11.9411 −0.380476
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.3137 0.359755
\(990\) 0 0
\(991\) 13.7990i 0.438339i 0.975687 + 0.219170i \(0.0703348\pi\)
−0.975687 + 0.219170i \(0.929665\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.485281i 0.0153845i
\(996\) 0 0
\(997\) − 17.5980i − 0.557334i −0.960388 0.278667i \(-0.910107\pi\)
0.960388 0.278667i \(-0.0898925\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2304.2.f.a.1151.4 4
3.2 odd 2 2304.2.f.h.1151.2 4
4.3 odd 2 2304.2.f.b.1151.3 4
8.3 odd 2 2304.2.f.h.1151.1 4
8.5 even 2 2304.2.f.g.1151.2 4
12.11 even 2 2304.2.f.g.1151.1 4
16.3 odd 4 1152.2.c.b.1151.3 yes 4
16.5 even 4 1152.2.c.d.1151.2 yes 4
16.11 odd 4 1152.2.c.a.1151.2 4
16.13 even 4 1152.2.c.c.1151.3 yes 4
24.5 odd 2 2304.2.f.b.1151.4 4
24.11 even 2 inner 2304.2.f.a.1151.3 4
48.5 odd 4 1152.2.c.a.1151.3 yes 4
48.11 even 4 1152.2.c.d.1151.3 yes 4
48.29 odd 4 1152.2.c.b.1151.2 yes 4
48.35 even 4 1152.2.c.c.1151.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.2.c.a.1151.2 4 16.11 odd 4
1152.2.c.a.1151.3 yes 4 48.5 odd 4
1152.2.c.b.1151.2 yes 4 48.29 odd 4
1152.2.c.b.1151.3 yes 4 16.3 odd 4
1152.2.c.c.1151.2 yes 4 48.35 even 4
1152.2.c.c.1151.3 yes 4 16.13 even 4
1152.2.c.d.1151.2 yes 4 16.5 even 4
1152.2.c.d.1151.3 yes 4 48.11 even 4
2304.2.f.a.1151.3 4 24.11 even 2 inner
2304.2.f.a.1151.4 4 1.1 even 1 trivial
2304.2.f.b.1151.3 4 4.3 odd 2
2304.2.f.b.1151.4 4 24.5 odd 2
2304.2.f.g.1151.1 4 12.11 even 2
2304.2.f.g.1151.2 4 8.5 even 2
2304.2.f.h.1151.1 4 8.3 odd 2
2304.2.f.h.1151.2 4 3.2 odd 2