Properties

Label 2304.2.d.o
Level $2304$
Weight $2$
Character orbit 2304.d
Analytic conductor $18.398$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.3975326257\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{5} + 2 q^{7} +O(q^{10})\) \( q + 4 i q^{5} + 2 q^{7} + 4 i q^{11} -2 i q^{13} + 2 q^{17} + 8 i q^{19} -4 q^{23} -11 q^{25} + 6 q^{31} + 8 i q^{35} -2 i q^{37} + 6 q^{41} + 4 q^{47} -3 q^{49} -16 q^{55} -4 i q^{59} -14 i q^{61} + 8 q^{65} + 4 i q^{67} -12 q^{71} + 10 q^{73} + 8 i q^{77} -10 q^{79} + 12 i q^{83} + 8 i q^{85} -14 q^{89} -4 i q^{91} -32 q^{95} + 10 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{7} + O(q^{10}) \) \( 2q + 4q^{7} + 4q^{17} - 8q^{23} - 22q^{25} + 12q^{31} + 12q^{41} + 8q^{47} - 6q^{49} - 32q^{55} + 16q^{65} - 24q^{71} + 20q^{73} - 20q^{79} - 28q^{89} - 64q^{95} + 20q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1153.1
1.00000i
1.00000i
0 0 0 4.00000i 0 2.00000 0 0 0
1153.2 0 0 0 4.00000i 0 2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.2.d.o 2
3.b odd 2 1 768.2.d.f 2
4.b odd 2 1 2304.2.d.f 2
8.b even 2 1 inner 2304.2.d.o 2
8.d odd 2 1 2304.2.d.f 2
12.b even 2 1 768.2.d.c 2
16.e even 4 1 1152.2.a.a 1
16.e even 4 1 1152.2.a.s 1
16.f odd 4 1 1152.2.a.b 1
16.f odd 4 1 1152.2.a.t 1
24.f even 2 1 768.2.d.c 2
24.h odd 2 1 768.2.d.f 2
48.i odd 4 1 384.2.a.d yes 1
48.i odd 4 1 384.2.a.e yes 1
48.k even 4 1 384.2.a.a 1
48.k even 4 1 384.2.a.h yes 1
240.t even 4 1 9600.2.a.e 1
240.t even 4 1 9600.2.a.bk 1
240.bm odd 4 1 9600.2.a.t 1
240.bm odd 4 1 9600.2.a.bz 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.2.a.a 1 48.k even 4 1
384.2.a.d yes 1 48.i odd 4 1
384.2.a.e yes 1 48.i odd 4 1
384.2.a.h yes 1 48.k even 4 1
768.2.d.c 2 12.b even 2 1
768.2.d.c 2 24.f even 2 1
768.2.d.f 2 3.b odd 2 1
768.2.d.f 2 24.h odd 2 1
1152.2.a.a 1 16.e even 4 1
1152.2.a.b 1 16.f odd 4 1
1152.2.a.s 1 16.e even 4 1
1152.2.a.t 1 16.f odd 4 1
2304.2.d.f 2 4.b odd 2 1
2304.2.d.f 2 8.d odd 2 1
2304.2.d.o 2 1.a even 1 1 trivial
2304.2.d.o 2 8.b even 2 1 inner
9600.2.a.e 1 240.t even 4 1
9600.2.a.t 1 240.bm odd 4 1
9600.2.a.bk 1 240.t even 4 1
9600.2.a.bz 1 240.bm odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2304, [\chi])\):

\( T_{5}^{2} + 16 \)
\( T_{7} - 2 \)
\( T_{11}^{2} + 16 \)
\( T_{17} - 2 \)
\( T_{23} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 - 2 T + 5 T^{2} )( 1 + 2 T + 5 T^{2} ) \)
$7$ \( ( 1 - 2 T + 7 T^{2} )^{2} \)
$11$ \( 1 - 6 T^{2} + 121 T^{4} \)
$13$ \( 1 - 22 T^{2} + 169 T^{4} \)
$17$ \( ( 1 - 2 T + 17 T^{2} )^{2} \)
$19$ \( 1 + 26 T^{2} + 361 T^{4} \)
$23$ \( ( 1 + 4 T + 23 T^{2} )^{2} \)
$29$ \( ( 1 - 29 T^{2} )^{2} \)
$31$ \( ( 1 - 6 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 12 T + 37 T^{2} )( 1 + 12 T + 37 T^{2} ) \)
$41$ \( ( 1 - 6 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 - 43 T^{2} )^{2} \)
$47$ \( ( 1 - 4 T + 47 T^{2} )^{2} \)
$53$ \( ( 1 - 53 T^{2} )^{2} \)
$59$ \( 1 - 102 T^{2} + 3481 T^{4} \)
$61$ \( 1 + 74 T^{2} + 3721 T^{4} \)
$67$ \( 1 - 118 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 + 12 T + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 10 T + 73 T^{2} )^{2} \)
$79$ \( ( 1 + 10 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 22 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 + 14 T + 89 T^{2} )^{2} \)
$97$ \( ( 1 - 10 T + 97 T^{2} )^{2} \)
show more
show less