# Properties

 Label 2304.2.d.j.1153.1 Level $2304$ Weight $2$ Character 2304.1153 Analytic conductor $18.398$ Analytic rank $0$ Dimension $2$ CM discriminant -4 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2304,2,Mod(1153,2304)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2304, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2304.1153");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2304 = 2^{8} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2304.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$18.3975326257$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 32) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## Embedding invariants

 Embedding label 1153.1 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 2304.1153 Dual form 2304.2.d.j.1153.2

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-2.00000i q^{5} +O(q^{10})$$ $$q-2.00000i q^{5} +6.00000i q^{13} -2.00000 q^{17} +1.00000 q^{25} +10.0000i q^{29} +2.00000i q^{37} +10.0000 q^{41} -7.00000 q^{49} +14.0000i q^{53} -10.0000i q^{61} +12.0000 q^{65} +6.00000 q^{73} +4.00000i q^{85} +10.0000 q^{89} +18.0000 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q - 4 q^{17} + 2 q^{25} + 20 q^{41} - 14 q^{49} + 24 q^{65} + 12 q^{73} + 20 q^{89} + 36 q^{97}+O(q^{100})$$ 2 * q - 4 * q^17 + 2 * q^25 + 20 * q^41 - 14 * q^49 + 24 * q^65 + 12 * q^73 + 20 * q^89 + 36 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times$$.

 $$n$$ $$1279$$ $$1793$$ $$2053$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ − 2.00000i − 0.894427i −0.894427 0.447214i $$-0.852416\pi$$
0.894427 0.447214i $$-0.147584\pi$$
$$6$$ 0 0
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$12$$ 0 0
$$13$$ 6.00000i 1.66410i 0.554700 + 0.832050i $$0.312833\pi$$
−0.554700 + 0.832050i $$0.687167\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −2.00000 −0.485071 −0.242536 0.970143i $$-0.577979\pi$$
−0.242536 + 0.970143i $$0.577979\pi$$
$$18$$ 0 0
$$19$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 10.0000i 1.85695i 0.371391 + 0.928477i $$0.378881\pi$$
−0.371391 + 0.928477i $$0.621119\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 2.00000i 0.328798i 0.986394 + 0.164399i $$0.0525685\pi$$
−0.986394 + 0.164399i $$0.947432\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 10.0000 1.56174 0.780869 0.624695i $$-0.214777\pi$$
0.780869 + 0.624695i $$0.214777\pi$$
$$42$$ 0 0
$$43$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ 0 0
$$49$$ −7.00000 −1.00000
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 14.0000i 1.92305i 0.274721 + 0.961524i $$0.411414\pi$$
−0.274721 + 0.961524i $$0.588586\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$60$$ 0 0
$$61$$ − 10.0000i − 1.28037i −0.768221 0.640184i $$-0.778858\pi$$
0.768221 0.640184i $$-0.221142\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 12.0000 1.48842
$$66$$ 0 0
$$67$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 6.00000 0.702247 0.351123 0.936329i $$-0.385800\pi$$
0.351123 + 0.936329i $$0.385800\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$84$$ 0 0
$$85$$ 4.00000i 0.433861i
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 10.0000 1.06000 0.529999 0.847998i $$-0.322192\pi$$
0.529999 + 0.847998i $$0.322192\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 18.0000 1.82762 0.913812 0.406138i $$-0.133125\pi$$
0.913812 + 0.406138i $$0.133125\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ − 2.00000i − 0.199007i −0.995037 0.0995037i $$-0.968274\pi$$
0.995037 0.0995037i $$-0.0317255\pi$$
$$102$$ 0 0
$$103$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$108$$ 0 0
$$109$$ 6.00000i 0.574696i 0.957826 + 0.287348i $$0.0927736\pi$$
−0.957826 + 0.287348i $$0.907226\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 14.0000 1.31701 0.658505 0.752577i $$-0.271189\pi$$
0.658505 + 0.752577i $$0.271189\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 11.0000 1.00000
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ − 12.0000i − 1.07331i
$$126$$ 0 0
$$127$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −22.0000 −1.87959 −0.939793 0.341743i $$-0.888983\pi$$
−0.939793 + 0.341743i $$0.888983\pi$$
$$138$$ 0 0
$$139$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 20.0000 1.66091
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 14.0000i 1.14692i 0.819232 + 0.573462i $$0.194400\pi$$
−0.819232 + 0.573462i $$0.805600\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 22.0000i 1.75579i 0.478852 + 0.877896i $$0.341053\pi$$
−0.478852 + 0.877896i $$0.658947\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ −23.0000 −1.76923
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 26.0000i 1.97674i 0.152057 + 0.988372i $$0.451410\pi$$
−0.152057 + 0.988372i $$0.548590\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$180$$ 0 0
$$181$$ 18.0000i 1.33793i 0.743294 + 0.668965i $$0.233262\pi$$
−0.743294 + 0.668965i $$0.766738\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 4.00000 0.294086
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ −14.0000 −1.00774 −0.503871 0.863779i $$-0.668091\pi$$
−0.503871 + 0.863779i $$0.668091\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ − 2.00000i − 0.142494i −0.997459 0.0712470i $$-0.977302\pi$$
0.997459 0.0712470i $$-0.0226979\pi$$
$$198$$ 0 0
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ − 20.0000i − 1.39686i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ − 12.0000i − 0.807207i
$$222$$ 0 0
$$223$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$228$$ 0 0
$$229$$ − 30.0000i − 1.98246i −0.132164 0.991228i $$-0.542192\pi$$
0.132164 0.991228i $$-0.457808\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 26.0000 1.70332 0.851658 0.524097i $$-0.175597\pi$$
0.851658 + 0.524097i $$0.175597\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ −30.0000 −1.93247 −0.966235 0.257663i $$-0.917048\pi$$
−0.966235 + 0.257663i $$0.917048\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 14.0000i 0.894427i
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −2.00000 −0.124757 −0.0623783 0.998053i $$-0.519869\pi$$
−0.0623783 + 0.998053i $$0.519869\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$264$$ 0 0
$$265$$ 28.0000 1.72003
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 26.0000i 1.58525i 0.609711 + 0.792624i $$0.291286\pi$$
−0.609711 + 0.792624i $$0.708714\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 18.0000i 1.08152i 0.841178 + 0.540758i $$0.181862\pi$$
−0.841178 + 0.540758i $$0.818138\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 10.0000 0.596550 0.298275 0.954480i $$-0.403589\pi$$
0.298275 + 0.954480i $$0.403589\pi$$
$$282$$ 0 0
$$283$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −13.0000 −0.764706
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ − 34.0000i − 1.98630i −0.116841 0.993151i $$-0.537277\pi$$
0.116841 0.993151i $$-0.462723\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −20.0000 −1.14520
$$306$$ 0 0
$$307$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ −26.0000 −1.46961 −0.734803 0.678280i $$-0.762726\pi$$
−0.734803 + 0.678280i $$0.762726\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ − 22.0000i − 1.23564i −0.786318 0.617822i $$-0.788015\pi$$
0.786318 0.617822i $$-0.211985\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 6.00000i 0.332820i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 18.0000 0.980522 0.490261 0.871576i $$-0.336901\pi$$
0.490261 + 0.871576i $$0.336901\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$348$$ 0 0
$$349$$ − 10.0000i − 0.535288i −0.963518 0.267644i $$-0.913755\pi$$
0.963518 0.267644i $$-0.0862451\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −34.0000 −1.80964 −0.904819 0.425797i $$-0.859994\pi$$
−0.904819 + 0.425797i $$0.859994\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ 19.0000 1.00000
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ − 12.0000i − 0.628109i
$$366$$ 0 0
$$367$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ − 14.0000i − 0.724893i −0.932005 0.362446i $$-0.881942\pi$$
0.932005 0.362446i $$-0.118058\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −60.0000 −3.09016
$$378$$ 0 0
$$379$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ − 34.0000i − 1.72387i −0.507020 0.861934i $$-0.669253\pi$$
0.507020 0.861934i $$-0.330747\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 38.0000i 1.90717i 0.301131 + 0.953583i $$0.402636\pi$$
−0.301131 + 0.953583i $$0.597364\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −2.00000 −0.0998752 −0.0499376 0.998752i $$-0.515902\pi$$
−0.0499376 + 0.998752i $$0.515902\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 6.00000 0.296681 0.148340 0.988936i $$-0.452607\pi$$
0.148340 + 0.988936i $$0.452607\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$420$$ 0 0
$$421$$ − 30.0000i − 1.46211i −0.682318 0.731055i $$-0.739028\pi$$
0.682318 0.731055i $$-0.260972\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −2.00000 −0.0970143
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ 0 0
$$433$$ 34.0000 1.63394 0.816968 0.576683i $$-0.195653\pi$$
0.816968 + 0.576683i $$0.195653\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$444$$ 0 0
$$445$$ − 20.0000i − 0.948091i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 14.0000 0.660701 0.330350 0.943858i $$-0.392833\pi$$
0.330350 + 0.943858i $$0.392833\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −42.0000 −1.96468 −0.982339 0.187112i $$-0.940087\pi$$
−0.982339 + 0.187112i $$0.940087\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ − 38.0000i − 1.76984i −0.465746 0.884918i $$-0.654214\pi$$
0.465746 0.884918i $$-0.345786\pi$$
$$462$$ 0 0
$$463$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$480$$ 0 0
$$481$$ −12.0000 −0.547153
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ − 36.0000i − 1.63468i
$$486$$ 0 0
$$487$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$492$$ 0 0
$$493$$ − 20.0000i − 0.900755i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ −4.00000 −0.177998
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 10.0000i 0.443242i 0.975133 + 0.221621i $$0.0711348\pi$$
−0.975133 + 0.221621i $$0.928865\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −22.0000 −0.963837 −0.481919 0.876216i $$-0.660060\pi$$
−0.481919 + 0.876216i $$0.660060\pi$$
$$522$$ 0 0
$$523$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −23.0000 −1.00000
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 60.0000i 2.59889i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ − 42.0000i − 1.80572i −0.429934 0.902861i $$-0.641463\pi$$
0.429934 0.902861i $$-0.358537\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 12.0000 0.514024
$$546$$ 0 0
$$547$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ − 38.0000i − 1.61011i −0.593199 0.805056i $$-0.702135\pi$$
0.593199 0.805056i $$-0.297865\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$564$$ 0 0
$$565$$ − 28.0000i − 1.17797i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 26.0000 1.08998 0.544988 0.838444i $$-0.316534\pi$$
0.544988 + 0.838444i $$0.316534\pi$$
$$570$$ 0 0
$$571$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 2.00000 0.0832611 0.0416305 0.999133i $$-0.486745\pi$$
0.0416305 + 0.999133i $$0.486745\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 46.0000 1.88899 0.944497 0.328521i $$-0.106550\pi$$
0.944497 + 0.328521i $$0.106550\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ −10.0000 −0.407909 −0.203954 0.978980i $$-0.565379\pi$$
−0.203954 + 0.978980i $$0.565379\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ − 22.0000i − 0.894427i
$$606$$ 0 0
$$607$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 34.0000i 1.37325i 0.727013 + 0.686624i $$0.240908\pi$$
−0.727013 + 0.686624i $$0.759092\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −38.0000 −1.52982 −0.764911 0.644136i $$-0.777217\pi$$
−0.764911 + 0.644136i $$0.777217\pi$$
$$618$$ 0 0
$$619$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −19.0000 −0.760000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ − 4.00000i − 0.159490i
$$630$$ 0 0
$$631$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ − 42.0000i − 1.66410i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −50.0000 −1.97488 −0.987441 0.157991i $$-0.949498\pi$$
−0.987441 + 0.157991i $$0.949498\pi$$
$$642$$ 0 0
$$643$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 26.0000i 1.01746i 0.860927 + 0.508729i $$0.169885\pi$$
−0.860927 + 0.508729i $$0.830115\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$660$$ 0 0
$$661$$ 50.0000i 1.94477i 0.233373 + 0.972387i $$0.425024\pi$$
−0.233373 + 0.972387i $$0.574976\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ −46.0000 −1.77317 −0.886585 0.462566i $$-0.846929\pi$$
−0.886585 + 0.462566i $$0.846929\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ − 2.00000i − 0.0768662i −0.999261 0.0384331i $$-0.987763\pi$$
0.999261 0.0384331i $$-0.0122367\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$684$$ 0 0
$$685$$ 44.0000i 1.68115i
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −84.0000 −3.20015
$$690$$ 0 0
$$691$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −20.0000 −0.757554
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 10.0000i 0.377695i 0.982006 + 0.188847i $$0.0604752\pi$$
−0.982006 + 0.188847i $$0.939525\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ − 30.0000i − 1.12667i −0.826227 0.563337i $$-0.809517\pi$$
0.826227 0.563337i $$-0.190483\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 10.0000i 0.371391i
$$726$$ 0 0
$$727$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 54.0000i 1.99454i 0.0738717 + 0.997268i $$0.476464\pi$$
−0.0738717 + 0.997268i $$0.523536\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ 0 0
$$745$$ 28.0000 1.02584
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 18.0000i 0.654221i 0.944986 + 0.327111i $$0.106075\pi$$
−0.944986 + 0.327111i $$0.893925\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −38.0000 −1.37750 −0.688749 0.724999i $$-0.741840\pi$$
−0.688749 + 0.724999i $$0.741840\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 50.0000 1.80305 0.901523 0.432731i $$-0.142450\pi$$
0.901523 + 0.432731i $$0.142450\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ − 34.0000i − 1.22290i −0.791285 0.611448i $$-0.790588\pi$$
0.791285 0.611448i $$-0.209412\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 44.0000 1.57043
$$786$$ 0 0
$$787$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 60.0000 2.13066
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 22.0000i − 0.779280i −0.920967 0.389640i $$-0.872599\pi$$
0.920967 0.389640i $$-0.127401\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 10.0000 0.351581 0.175791 0.984428i $$-0.443752\pi$$
0.175791 + 0.984428i $$0.443752\pi$$
$$810$$ 0 0
$$811$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 0 0
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ − 50.0000i − 1.74501i −0.488603 0.872506i $$-0.662493\pi$$
0.488603 0.872506i $$-0.337507\pi$$
$$822$$ 0 0
$$823$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$828$$ 0 0
$$829$$ 54.0000i 1.87550i 0.347314 + 0.937749i $$0.387094\pi$$
−0.347314 + 0.937749i $$0.612906\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 14.0000 0.485071
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ −71.0000 −2.44828
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 46.0000i 1.58245i
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ − 46.0000i − 1.57501i −0.616308 0.787505i $$-0.711372\pi$$
0.616308 0.787505i $$-0.288628\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 58.0000 1.98124 0.990621 0.136637i $$-0.0436295\pi$$
0.990621 + 0.136637i $$0.0436295\pi$$
$$858$$ 0 0
$$859$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$864$$ 0 0
$$865$$ 52.0000 1.76805
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ − 58.0000i − 1.95852i −0.202606 0.979260i $$-0.564941\pi$$
0.202606 0.979260i $$-0.435059\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −50.0000 −1.68454 −0.842271 0.539054i $$-0.818782\pi$$
−0.842271 + 0.539054i $$0.818782\pi$$
$$882$$ 0 0
$$883$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ − 28.0000i − 0.932815i
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 36.0000 1.19668
$$906$$ 0 0
$$907$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 2.00000i 0.0657596i
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 46.0000 1.50921 0.754606 0.656179i $$-0.227828\pi$$
0.754606 + 0.656179i $$0.227828\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 38.0000 1.24141 0.620703 0.784046i $$-0.286847\pi$$
0.620703 + 0.784046i $$0.286847\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 58.0000i 1.89075i 0.325991 + 0.945373i $$0.394302\pi$$
−0.325991 + 0.945373i $$0.605698\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$948$$ 0 0
$$949$$ 36.0000i 1.16861i
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 26.0000 0.842223 0.421111 0.907009i $$-0.361640\pi$$
0.421111 + 0.907009i $$0.361640\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −31.0000 −1.00000
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 28.0000i 0.901352i
$$966$$ 0 0
$$967$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 62.0000 1.98356 0.991778 0.127971i $$-0.0408466\pi$$
0.991778 + 0.127971i $$0.0408466\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$984$$ 0 0
$$985$$ −4.00000 −0.127451
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ − 62.0000i − 1.96356i −0.190022 0.981780i $$-0.560856\pi$$
0.190022 0.981780i $$-0.439144\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2304.2.d.j.1153.1 2
3.2 odd 2 256.2.b.b.129.2 2
4.3 odd 2 CM 2304.2.d.j.1153.1 2
8.3 odd 2 inner 2304.2.d.j.1153.2 2
8.5 even 2 inner 2304.2.d.j.1153.2 2
12.11 even 2 256.2.b.b.129.2 2
16.3 odd 4 576.2.a.c.1.1 1
16.5 even 4 288.2.a.d.1.1 1
16.11 odd 4 288.2.a.d.1.1 1
16.13 even 4 576.2.a.c.1.1 1
24.5 odd 2 256.2.b.b.129.1 2
24.11 even 2 256.2.b.b.129.1 2
48.5 odd 4 32.2.a.a.1.1 1
48.11 even 4 32.2.a.a.1.1 1
48.29 odd 4 64.2.a.a.1.1 1
48.35 even 4 64.2.a.a.1.1 1
80.27 even 4 7200.2.f.m.6049.1 2
80.37 odd 4 7200.2.f.m.6049.1 2
80.43 even 4 7200.2.f.m.6049.2 2
80.53 odd 4 7200.2.f.m.6049.2 2
80.59 odd 4 7200.2.a.v.1.1 1
80.69 even 4 7200.2.a.v.1.1 1
96.5 odd 8 1024.2.e.j.257.1 4
96.11 even 8 1024.2.e.j.257.2 4
96.29 odd 8 1024.2.e.j.769.1 4
96.35 even 8 1024.2.e.j.769.1 4
96.53 odd 8 1024.2.e.j.257.2 4
96.59 even 8 1024.2.e.j.257.1 4
96.77 odd 8 1024.2.e.j.769.2 4
96.83 even 8 1024.2.e.j.769.2 4
144.5 odd 12 2592.2.i.t.865.1 2
144.11 even 12 2592.2.i.t.1729.1 2
144.43 odd 12 2592.2.i.e.1729.1 2
144.59 even 12 2592.2.i.t.865.1 2
144.85 even 12 2592.2.i.e.865.1 2
144.101 odd 12 2592.2.i.t.1729.1 2
144.133 even 12 2592.2.i.e.1729.1 2
144.139 odd 12 2592.2.i.e.865.1 2
240.29 odd 4 1600.2.a.n.1.1 1
240.53 even 4 800.2.c.e.449.2 2
240.59 even 4 800.2.a.d.1.1 1
240.77 even 4 1600.2.c.l.449.2 2
240.83 odd 4 1600.2.c.l.449.1 2
240.107 odd 4 800.2.c.e.449.1 2
240.149 odd 4 800.2.a.d.1.1 1
240.173 even 4 1600.2.c.l.449.1 2
240.179 even 4 1600.2.a.n.1.1 1
240.197 even 4 800.2.c.e.449.1 2
240.203 odd 4 800.2.c.e.449.2 2
240.227 odd 4 1600.2.c.l.449.2 2
336.5 even 12 1568.2.i.f.1537.1 2
336.11 even 12 1568.2.i.g.961.1 2
336.53 odd 12 1568.2.i.g.961.1 2
336.59 odd 12 1568.2.i.f.961.1 2
336.83 odd 4 3136.2.a.m.1.1 1
336.101 even 12 1568.2.i.f.961.1 2
336.107 even 12 1568.2.i.g.1537.1 2
336.125 even 4 3136.2.a.m.1.1 1
336.149 odd 12 1568.2.i.g.1537.1 2
336.251 odd 4 1568.2.a.e.1.1 1
336.293 even 4 1568.2.a.e.1.1 1
336.299 odd 12 1568.2.i.f.1537.1 2
528.131 odd 4 7744.2.a.v.1.1 1
528.197 even 4 3872.2.a.f.1.1 1
528.395 odd 4 3872.2.a.f.1.1 1
528.461 even 4 7744.2.a.v.1.1 1
624.155 even 4 5408.2.a.g.1.1 1
624.389 odd 4 5408.2.a.g.1.1 1
816.101 odd 4 9248.2.a.f.1.1 1
816.203 even 4 9248.2.a.f.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.a.a.1.1 1 48.5 odd 4
32.2.a.a.1.1 1 48.11 even 4
64.2.a.a.1.1 1 48.29 odd 4
64.2.a.a.1.1 1 48.35 even 4
256.2.b.b.129.1 2 24.5 odd 2
256.2.b.b.129.1 2 24.11 even 2
256.2.b.b.129.2 2 3.2 odd 2
256.2.b.b.129.2 2 12.11 even 2
288.2.a.d.1.1 1 16.5 even 4
288.2.a.d.1.1 1 16.11 odd 4
576.2.a.c.1.1 1 16.3 odd 4
576.2.a.c.1.1 1 16.13 even 4
800.2.a.d.1.1 1 240.59 even 4
800.2.a.d.1.1 1 240.149 odd 4
800.2.c.e.449.1 2 240.107 odd 4
800.2.c.e.449.1 2 240.197 even 4
800.2.c.e.449.2 2 240.53 even 4
800.2.c.e.449.2 2 240.203 odd 4
1024.2.e.j.257.1 4 96.5 odd 8
1024.2.e.j.257.1 4 96.59 even 8
1024.2.e.j.257.2 4 96.11 even 8
1024.2.e.j.257.2 4 96.53 odd 8
1024.2.e.j.769.1 4 96.29 odd 8
1024.2.e.j.769.1 4 96.35 even 8
1024.2.e.j.769.2 4 96.77 odd 8
1024.2.e.j.769.2 4 96.83 even 8
1568.2.a.e.1.1 1 336.251 odd 4
1568.2.a.e.1.1 1 336.293 even 4
1568.2.i.f.961.1 2 336.59 odd 12
1568.2.i.f.961.1 2 336.101 even 12
1568.2.i.f.1537.1 2 336.5 even 12
1568.2.i.f.1537.1 2 336.299 odd 12
1568.2.i.g.961.1 2 336.11 even 12
1568.2.i.g.961.1 2 336.53 odd 12
1568.2.i.g.1537.1 2 336.107 even 12
1568.2.i.g.1537.1 2 336.149 odd 12
1600.2.a.n.1.1 1 240.29 odd 4
1600.2.a.n.1.1 1 240.179 even 4
1600.2.c.l.449.1 2 240.83 odd 4
1600.2.c.l.449.1 2 240.173 even 4
1600.2.c.l.449.2 2 240.77 even 4
1600.2.c.l.449.2 2 240.227 odd 4
2304.2.d.j.1153.1 2 1.1 even 1 trivial
2304.2.d.j.1153.1 2 4.3 odd 2 CM
2304.2.d.j.1153.2 2 8.3 odd 2 inner
2304.2.d.j.1153.2 2 8.5 even 2 inner
2592.2.i.e.865.1 2 144.85 even 12
2592.2.i.e.865.1 2 144.139 odd 12
2592.2.i.e.1729.1 2 144.43 odd 12
2592.2.i.e.1729.1 2 144.133 even 12
2592.2.i.t.865.1 2 144.5 odd 12
2592.2.i.t.865.1 2 144.59 even 12
2592.2.i.t.1729.1 2 144.11 even 12
2592.2.i.t.1729.1 2 144.101 odd 12
3136.2.a.m.1.1 1 336.83 odd 4
3136.2.a.m.1.1 1 336.125 even 4
3872.2.a.f.1.1 1 528.197 even 4
3872.2.a.f.1.1 1 528.395 odd 4
5408.2.a.g.1.1 1 624.155 even 4
5408.2.a.g.1.1 1 624.389 odd 4
7200.2.a.v.1.1 1 80.59 odd 4
7200.2.a.v.1.1 1 80.69 even 4
7200.2.f.m.6049.1 2 80.27 even 4
7200.2.f.m.6049.1 2 80.37 odd 4
7200.2.f.m.6049.2 2 80.43 even 4
7200.2.f.m.6049.2 2 80.53 odd 4
7744.2.a.v.1.1 1 528.131 odd 4
7744.2.a.v.1.1 1 528.461 even 4
9248.2.a.f.1.1 1 816.101 odd 4
9248.2.a.f.1.1 1 816.203 even 4