Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2304,2,Mod(1153,2304)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2304.1153");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2304 = 2^{8} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2304.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.3975326257\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 24) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1153.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2304.1153 |
Dual form | 2304.2.d.i.1153.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).
\(n\) | \(1279\) | \(1793\) | \(2053\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 2.00000i | − 0.894427i | −0.894427 | − | 0.447214i | \(-0.852416\pi\) | ||||
0.894427 | − | 0.447214i | \(-0.147584\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 4.00000i | 1.20605i | 0.797724 | + | 0.603023i | \(0.206037\pi\) | ||||
−0.797724 | + | 0.603023i | \(0.793963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 2.00000i | − 0.554700i | −0.960769 | − | 0.277350i | \(-0.910544\pi\) | ||||
0.960769 | − | 0.277350i | \(-0.0894562\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.00000 | −0.485071 | −0.242536 | − | 0.970143i | \(-0.577979\pi\) | ||||
−0.242536 | + | 0.970143i | \(0.577979\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − 4.00000i | − 0.917663i | −0.888523 | − | 0.458831i | \(-0.848268\pi\) | ||||
0.888523 | − | 0.458831i | \(-0.151732\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −8.00000 | −1.66812 | −0.834058 | − | 0.551677i | \(-0.813988\pi\) | ||||
−0.834058 | + | 0.551677i | \(0.813988\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − 6.00000i | − 1.11417i | −0.830455 | − | 0.557086i | \(-0.811919\pi\) | ||||
0.830455 | − | 0.557086i | \(-0.188081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 1.43684 | 0.718421 | − | 0.695608i | \(-0.244865\pi\) | ||||
0.718421 | + | 0.695608i | \(0.244865\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 6.00000i | − 0.986394i | −0.869918 | − | 0.493197i | \(-0.835828\pi\) | ||||
0.869918 | − | 0.493197i | \(-0.164172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 4.00000i | − 0.609994i | −0.952353 | − | 0.304997i | \(-0.901344\pi\) | ||||
0.952353 | − | 0.304997i | \(-0.0986555\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 2.00000i | − 0.274721i | −0.990521 | − | 0.137361i | \(-0.956138\pi\) | ||||
0.990521 | − | 0.137361i | \(-0.0438619\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 8.00000 | 1.07872 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 4.00000i | 0.520756i | 0.965507 | + | 0.260378i | \(0.0838471\pi\) | ||||
−0.965507 | + | 0.260378i | \(0.916153\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | − 2.00000i | − 0.256074i | −0.991769 | − | 0.128037i | \(-0.959132\pi\) | ||||
0.991769 | − | 0.128037i | \(-0.0408676\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −4.00000 | −0.496139 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 4.00000i | − 0.488678i | −0.969690 | − | 0.244339i | \(-0.921429\pi\) | ||||
0.969690 | − | 0.244339i | \(-0.0785709\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 8.00000 | 0.949425 | 0.474713 | − | 0.880141i | \(-0.342552\pi\) | ||||
0.474713 | + | 0.880141i | \(0.342552\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −10.0000 | −1.17041 | −0.585206 | − | 0.810885i | \(-0.698986\pi\) | ||||
−0.585206 | + | 0.810885i | \(0.698986\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 4.00000i | 0.439057i | 0.975606 | + | 0.219529i | \(0.0704519\pi\) | ||||
−0.975606 | + | 0.219529i | \(0.929548\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 4.00000i | 0.433861i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
−0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −8.00000 | −0.820783 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.00000 | 0.203069 | 0.101535 | − | 0.994832i | \(-0.467625\pi\) | ||||
0.101535 | + | 0.994832i | \(0.467625\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | − 18.0000i | − 1.79107i | −0.444994 | − | 0.895533i | \(-0.646794\pi\) | ||||
0.444994 | − | 0.895533i | \(-0.353206\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −16.0000 | −1.57653 | −0.788263 | − | 0.615338i | \(-0.789020\pi\) | ||||
−0.788263 | + | 0.615338i | \(0.789020\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 12.0000i | − 1.16008i | −0.814587 | − | 0.580042i | \(-0.803036\pi\) | ||||
0.814587 | − | 0.580042i | \(-0.196964\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − 2.00000i | − 0.191565i | −0.995402 | − | 0.0957826i | \(-0.969465\pi\) | ||||
0.995402 | − | 0.0957826i | \(-0.0305354\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −18.0000 | −1.69330 | −0.846649 | − | 0.532152i | \(-0.821383\pi\) | ||||
−0.846649 | + | 0.532152i | \(0.821383\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 16.0000i | 1.49201i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −5.00000 | −0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − 12.0000i | − 1.07331i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −8.00000 | −0.709885 | −0.354943 | − | 0.934888i | \(-0.615500\pi\) | ||||
−0.354943 | + | 0.934888i | \(0.615500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 4.00000i | 0.349482i | 0.984614 | + | 0.174741i | \(0.0559088\pi\) | ||||
−0.984614 | + | 0.174741i | \(0.944091\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −6.00000 | −0.512615 | −0.256307 | − | 0.966595i | \(-0.582506\pi\) | ||||
−0.256307 | + | 0.966595i | \(0.582506\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 12.0000i | 1.01783i | 0.860818 | + | 0.508913i | \(0.169953\pi\) | ||||
−0.860818 | + | 0.508913i | \(0.830047\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 8.00000 | 0.668994 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −12.0000 | −0.996546 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 14.0000i | 1.14692i | 0.819232 | + | 0.573462i | \(0.194400\pi\) | ||||
−0.819232 | + | 0.573462i | \(0.805600\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 16.0000 | 1.30206 | 0.651031 | − | 0.759051i | \(-0.274337\pi\) | ||||
0.651031 | + | 0.759051i | \(0.274337\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | − 16.0000i | − 1.28515i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 2.00000i | − 0.159617i | −0.996810 | − | 0.0798087i | \(-0.974569\pi\) | ||||
0.996810 | − | 0.0798087i | \(-0.0254309\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 12.0000i | 0.939913i | 0.882690 | + | 0.469956i | \(0.155730\pi\) | ||||
−0.882690 | + | 0.469956i | \(0.844270\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 24.0000 | 1.85718 | 0.928588 | − | 0.371113i | \(-0.121024\pi\) | ||||
0.928588 | + | 0.371113i | \(0.121024\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 6.00000i | − 0.456172i | −0.973641 | − | 0.228086i | \(-0.926753\pi\) | ||||
0.973641 | − | 0.228086i | \(-0.0732467\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − 12.0000i | − 0.896922i | −0.893802 | − | 0.448461i | \(-0.851972\pi\) | ||||
0.893802 | − | 0.448461i | \(-0.148028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | − 6.00000i | − 0.445976i | −0.974821 | − | 0.222988i | \(-0.928419\pi\) | ||||
0.974821 | − | 0.222988i | \(-0.0715812\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −12.0000 | −0.882258 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 8.00000i | − 0.585018i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 2.00000 | 0.143963 | 0.0719816 | − | 0.997406i | \(-0.477068\pi\) | ||||
0.0719816 | + | 0.997406i | \(0.477068\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 18.0000i | − 1.28245i | −0.767354 | − | 0.641223i | \(-0.778427\pi\) | ||||
0.767354 | − | 0.641223i | \(-0.221573\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 12.0000i | 0.838116i | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 16.0000 | 1.10674 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | − 20.0000i | − 1.37686i | −0.725304 | − | 0.688428i | \(-0.758301\pi\) | ||||
0.725304 | − | 0.688428i | \(-0.241699\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −8.00000 | −0.545595 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 4.00000i | 0.269069i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.00000 | −0.535720 | −0.267860 | − | 0.963458i | \(-0.586316\pi\) | ||||
−0.267860 | + | 0.963458i | \(0.586316\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 12.0000i | − 0.796468i | −0.917284 | − | 0.398234i | \(-0.869623\pi\) | ||||
0.917284 | − | 0.398234i | \(-0.130377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | − 22.0000i | − 1.45380i | −0.686743 | − | 0.726900i | \(-0.740960\pi\) | ||||
0.686743 | − | 0.726900i | \(-0.259040\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 10.0000 | 0.655122 | 0.327561 | − | 0.944830i | \(-0.393773\pi\) | ||||
0.327561 | + | 0.944830i | \(0.393773\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 16.0000 | 1.03495 | 0.517477 | − | 0.855697i | \(-0.326871\pi\) | ||||
0.517477 | + | 0.855697i | \(0.326871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 18.0000 | 1.15948 | 0.579741 | − | 0.814801i | \(-0.303154\pi\) | ||||
0.579741 | + | 0.814801i | \(0.303154\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 14.0000i | 0.894427i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −8.00000 | −0.509028 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 20.0000i | 1.26239i | 0.775625 | + | 0.631194i | \(0.217435\pi\) | ||||
−0.775625 | + | 0.631194i | \(0.782565\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 32.0000i | − 2.01182i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −2.00000 | −0.124757 | −0.0623783 | − | 0.998053i | \(-0.519869\pi\) | ||||
−0.0623783 | + | 0.998053i | \(0.519869\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −8.00000 | −0.493301 | −0.246651 | − | 0.969104i | \(-0.579330\pi\) | ||||
−0.246651 | + | 0.969104i | \(0.579330\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −4.00000 | −0.245718 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 10.0000i | 0.609711i | 0.952399 | + | 0.304855i | \(0.0986081\pi\) | ||||
−0.952399 | + | 0.304855i | \(0.901392\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000 | 0.485965 | 0.242983 | − | 0.970031i | \(-0.421874\pi\) | ||||
0.242983 | + | 0.970031i | \(0.421874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 4.00000i | 0.241209i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 26.0000i | 1.56219i | 0.624413 | + | 0.781094i | \(0.285338\pi\) | ||||
−0.624413 | + | 0.781094i | \(0.714662\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 26.0000 | 1.55103 | 0.775515 | − | 0.631329i | \(-0.217490\pi\) | ||||
0.775515 | + | 0.631329i | \(0.217490\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 28.0000i | 1.66443i | 0.554455 | + | 0.832214i | \(0.312927\pi\) | ||||
−0.554455 | + | 0.832214i | \(0.687073\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 18.0000i | − 1.05157i | −0.850617 | − | 0.525786i | \(-0.823771\pi\) | ||||
0.850617 | − | 0.525786i | \(-0.176229\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 8.00000 | 0.465778 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 16.0000i | 0.925304i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −4.00000 | −0.229039 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.0000i | 0.684876i | 0.939540 | + | 0.342438i | \(0.111253\pi\) | ||||
−0.939540 | + | 0.342438i | \(0.888747\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −24.0000 | −1.36092 | −0.680458 | − | 0.732787i | \(-0.738219\pi\) | ||||
−0.680458 | + | 0.732787i | \(0.738219\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 6.00000 | 0.339140 | 0.169570 | − | 0.985518i | \(-0.445762\pi\) | ||||
0.169570 | + | 0.985518i | \(0.445762\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 6.00000i | − 0.336994i | −0.985702 | − | 0.168497i | \(-0.946109\pi\) | ||||
0.985702 | − | 0.168497i | \(-0.0538913\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 24.0000 | 1.34374 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 8.00000i | 0.445132i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | − 2.00000i | − 0.110940i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 20.0000i | − 1.09930i | −0.835395 | − | 0.549650i | \(-0.814761\pi\) | ||||
0.835395 | − | 0.549650i | \(-0.185239\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −8.00000 | −0.437087 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 18.0000 | 0.980522 | 0.490261 | − | 0.871576i | \(-0.336901\pi\) | ||||
0.490261 | + | 0.871576i | \(0.336901\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 32.0000i | 1.73290i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 12.0000i | − 0.644194i | −0.946707 | − | 0.322097i | \(-0.895612\pi\) | ||||
0.946707 | − | 0.322097i | \(-0.104388\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 30.0000i | 1.60586i | 0.596071 | + | 0.802932i | \(0.296728\pi\) | ||||
−0.596071 | + | 0.802932i | \(0.703272\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −2.00000 | −0.106449 | −0.0532246 | − | 0.998583i | \(-0.516950\pi\) | ||||
−0.0532246 | + | 0.998583i | \(0.516950\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | − 16.0000i | − 0.849192i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 3.00000 | 0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 20.0000i | 1.04685i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 10.0000i | 0.517780i | 0.965907 | + | 0.258890i | \(0.0833568\pi\) | ||||
−0.965907 | + | 0.258890i | \(0.916643\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −12.0000 | −0.618031 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 20.0000i | − 1.02733i | −0.857991 | − | 0.513665i | \(-0.828287\pi\) | ||||
0.857991 | − | 0.513665i | \(-0.171713\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − 2.00000i | − 0.101404i | −0.998714 | − | 0.0507020i | \(-0.983854\pi\) | ||||
0.998714 | − | 0.0507020i | \(-0.0161459\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 16.0000 | 0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 16.0000i | 0.805047i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 14.0000i | 0.702640i | 0.936255 | + | 0.351320i | \(0.114267\pi\) | ||||
−0.936255 | + | 0.351320i | \(0.885733\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 30.0000 | 1.49813 | 0.749064 | − | 0.662497i | \(-0.230503\pi\) | ||||
0.749064 | + | 0.662497i | \(0.230503\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 16.0000i | − 0.797017i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 24.0000 | 1.18964 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 6.00000 | 0.296681 | 0.148340 | − | 0.988936i | \(-0.452607\pi\) | ||||
0.148340 | + | 0.988936i | \(0.452607\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 8.00000 | 0.392705 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 12.0000i | − 0.586238i | −0.956076 | − | 0.293119i | \(-0.905307\pi\) | ||||
0.956076 | − | 0.293119i | \(-0.0946933\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000i | 0.487370i | 0.969854 | + | 0.243685i | \(0.0783563\pi\) | ||||
−0.969854 | + | 0.243685i | \(0.921644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −2.00000 | −0.0970143 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −32.0000 | −1.54139 | −0.770693 | − | 0.637207i | \(-0.780090\pi\) | ||||
−0.770693 | + | 0.637207i | \(0.780090\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −14.0000 | −0.672797 | −0.336399 | − | 0.941720i | \(-0.609209\pi\) | ||||
−0.336399 | + | 0.941720i | \(0.609209\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 32.0000i | 1.53077i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 20.0000i | 0.950229i | 0.879924 | + | 0.475114i | \(0.157593\pi\) | ||||
−0.879924 | + | 0.475114i | \(0.842407\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 12.0000i | 0.568855i | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 14.0000 | 0.660701 | 0.330350 | − | 0.943858i | \(-0.392833\pi\) | ||||
0.330350 | + | 0.943858i | \(0.392833\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | − 24.0000i | − 1.13012i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 22.0000 | 1.02912 | 0.514558 | − | 0.857455i | \(-0.327956\pi\) | ||||
0.514558 | + | 0.857455i | \(0.327956\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 26.0000i | 1.21094i | 0.795868 | + | 0.605470i | \(0.207015\pi\) | ||||
−0.795868 | + | 0.605470i | \(0.792985\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 8.00000 | 0.371792 | 0.185896 | − | 0.982569i | \(-0.440481\pi\) | ||||
0.185896 | + | 0.982569i | \(0.440481\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 36.0000i | 1.66588i | 0.553362 | + | 0.832941i | \(0.313345\pi\) | ||||
−0.553362 | + | 0.832941i | \(0.686655\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 16.0000 | 0.735681 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | − 4.00000i | − 0.183533i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 16.0000 | 0.731059 | 0.365529 | − | 0.930800i | \(-0.380888\pi\) | ||||
0.365529 | + | 0.930800i | \(0.380888\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −12.0000 | −0.547153 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | − 4.00000i | − 0.181631i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 32.0000 | 1.45006 | 0.725029 | − | 0.688718i | \(-0.241826\pi\) | ||||
0.725029 | + | 0.688718i | \(0.241826\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | − 12.0000i | − 0.541552i | −0.962642 | − | 0.270776i | \(-0.912720\pi\) | ||||
0.962642 | − | 0.270776i | \(-0.0872803\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 12.0000i | 0.540453i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 12.0000i | 0.537194i | 0.963253 | + | 0.268597i | \(0.0865599\pi\) | ||||
−0.963253 | + | 0.268597i | \(0.913440\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 24.0000 | 1.07011 | 0.535054 | − | 0.844818i | \(-0.320291\pi\) | ||||
0.535054 | + | 0.844818i | \(0.320291\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −36.0000 | −1.60198 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 6.00000i | − 0.265945i | −0.991120 | − | 0.132973i | \(-0.957548\pi\) | ||||
0.991120 | − | 0.132973i | \(-0.0424523\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 32.0000i | 1.41009i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 26.0000 | 1.13908 | 0.569540 | − | 0.821963i | \(-0.307121\pi\) | ||||
0.569540 | + | 0.821963i | \(0.307121\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 4.00000i | − 0.174908i | −0.996169 | − | 0.0874539i | \(-0.972127\pi\) | ||||
0.996169 | − | 0.0874539i | \(-0.0278730\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −16.0000 | −0.696971 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 41.0000 | 1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000i | 0.519778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −24.0000 | −1.03761 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 28.0000i | − 1.20605i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | − 18.0000i | − 0.773880i | −0.922105 | − | 0.386940i | \(-0.873532\pi\) | ||||
0.922105 | − | 0.386940i | \(-0.126468\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −4.00000 | −0.171341 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 44.0000i | 1.88130i | 0.339372 | + | 0.940652i | \(0.389785\pi\) | ||||
−0.339372 | + | 0.940652i | \(0.610215\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −24.0000 | −1.02243 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 26.0000i | 1.10166i | 0.834619 | + | 0.550828i | \(0.185688\pi\) | ||||
−0.834619 | + | 0.550828i | \(0.814312\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 28.0000i | − 1.18006i | −0.807382 | − | 0.590030i | \(-0.799116\pi\) | ||||
0.807382 | − | 0.590030i | \(-0.200884\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 36.0000i | 1.51453i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 10.0000 | 0.419222 | 0.209611 | − | 0.977785i | \(-0.432780\pi\) | ||||
0.209611 | + | 0.977785i | \(0.432780\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 36.0000i | − 1.50655i | −0.657704 | − | 0.753277i | \(-0.728472\pi\) | ||||
0.657704 | − | 0.753277i | \(-0.271528\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −8.00000 | −0.333623 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 2.00000 | 0.0832611 | 0.0416305 | − | 0.999133i | \(-0.486745\pi\) | ||||
0.0416305 | + | 0.999133i | \(0.486745\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 8.00000 | 0.331326 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 44.0000i | − 1.81607i | −0.418890 | − | 0.908037i | \(-0.637581\pi\) | ||||
0.418890 | − | 0.908037i | \(-0.362419\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | − 32.0000i | − 1.31854i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 14.0000 | 0.574911 | 0.287456 | − | 0.957794i | \(-0.407191\pi\) | ||||
0.287456 | + | 0.957794i | \(0.407191\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 24.0000 | 0.980613 | 0.490307 | − | 0.871550i | \(-0.336885\pi\) | ||||
0.490307 | + | 0.871550i | \(0.336885\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 38.0000 | 1.55005 | 0.775026 | − | 0.631929i | \(-0.217737\pi\) | ||||
0.775026 | + | 0.631929i | \(0.217737\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 10.0000i | 0.406558i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −40.0000 | −1.62355 | −0.811775 | − | 0.583970i | \(-0.801498\pi\) | ||||
−0.811775 | + | 0.583970i | \(0.801498\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 38.0000i | − 1.53481i | −0.641165 | − | 0.767403i | \(-0.721549\pi\) | ||||
0.641165 | − | 0.767403i | \(-0.278451\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 42.0000 | 1.69086 | 0.845428 | − | 0.534089i | \(-0.179345\pi\) | ||||
0.845428 | + | 0.534089i | \(0.179345\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 44.0000i | 1.76851i | 0.467005 | + | 0.884255i | \(0.345333\pi\) | ||||
−0.467005 | + | 0.884255i | \(0.654667\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12.0000i | 0.478471i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −16.0000 | −0.636950 | −0.318475 | − | 0.947931i | \(-0.603171\pi\) | ||||
−0.318475 | + | 0.947931i | \(0.603171\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 16.0000i | 0.634941i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 14.0000i | 0.554700i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 14.0000 | 0.552967 | 0.276483 | − | 0.961019i | \(-0.410831\pi\) | ||||
0.276483 | + | 0.961019i | \(0.410831\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 12.0000i | 0.473234i | 0.971603 | + | 0.236617i | \(0.0760386\pi\) | ||||
−0.971603 | + | 0.236617i | \(0.923961\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 8.00000 | 0.314512 | 0.157256 | − | 0.987558i | \(-0.449735\pi\) | ||||
0.157256 | + | 0.987558i | \(0.449735\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −16.0000 | −0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 6.00000i | − 0.234798i | −0.993085 | − | 0.117399i | \(-0.962544\pi\) | ||||
0.993085 | − | 0.117399i | \(-0.0374557\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 8.00000 | 0.312586 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 12.0000i | − 0.467454i | −0.972302 | − | 0.233727i | \(-0.924908\pi\) | ||||
0.972302 | − | 0.233727i | \(-0.0750921\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 10.0000i | 0.388955i | 0.980907 | + | 0.194477i | \(0.0623011\pi\) | ||||
−0.980907 | + | 0.194477i | \(0.937699\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 48.0000i | 1.85857i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 8.00000 | 0.308837 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 34.0000 | 1.31060 | 0.655302 | − | 0.755367i | \(-0.272541\pi\) | ||||
0.655302 | + | 0.755367i | \(0.272541\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 2.00000i | − 0.0768662i | −0.999261 | − | 0.0384331i | \(-0.987763\pi\) | ||||
0.999261 | − | 0.0384331i | \(-0.0122367\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 4.00000i | 0.153056i | 0.997067 | + | 0.0765279i | \(0.0243834\pi\) | ||||
−0.997067 | + | 0.0765279i | \(0.975617\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 12.0000i | 0.458496i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −4.00000 | −0.152388 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 4.00000i | − 0.152167i | −0.997101 | − | 0.0760836i | \(-0.975758\pi\) | ||||
0.997101 | − | 0.0760836i | \(-0.0242416\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 24.0000 | 0.910372 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 12.0000 | 0.454532 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 6.00000i | − 0.226617i | −0.993560 | − | 0.113308i | \(-0.963855\pi\) | ||||
0.993560 | − | 0.113308i | \(-0.0361448\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −24.0000 | −0.905177 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 10.0000i | 0.375558i | 0.982211 | + | 0.187779i | \(0.0601289\pi\) | ||||
−0.982211 | + | 0.187779i | \(0.939871\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −64.0000 | −2.39682 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | − 16.0000i | − 0.598366i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 32.0000 | 1.19340 | 0.596699 | − | 0.802465i | \(-0.296479\pi\) | ||||
0.596699 | + | 0.802465i | \(0.296479\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | − 6.00000i | − 0.222834i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −48.0000 | −1.78022 | −0.890111 | − | 0.455744i | \(-0.849373\pi\) | ||||
−0.890111 | + | 0.455744i | \(0.849373\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 8.00000i | 0.295891i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 14.0000i | 0.517102i | 0.965998 | + | 0.258551i | \(0.0832450\pi\) | ||||
−0.965998 | + | 0.258551i | \(0.916755\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 16.0000 | 0.589368 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 4.00000i | − 0.147142i | −0.997290 | − | 0.0735712i | \(-0.976560\pi\) | ||||
0.997290 | − | 0.0735712i | \(-0.0234396\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −8.00000 | −0.293492 | −0.146746 | − | 0.989174i | \(-0.546880\pi\) | ||||
−0.146746 | + | 0.989174i | \(0.546880\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 28.0000 | 1.02584 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 24.0000 | 0.875772 | 0.437886 | − | 0.899030i | \(-0.355727\pi\) | ||||
0.437886 | + | 0.899030i | \(0.355727\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | − 32.0000i | − 1.16460i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 38.0000i | − 1.38113i | −0.723269 | − | 0.690567i | \(-0.757361\pi\) | ||||
0.723269 | − | 0.690567i | \(-0.242639\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −22.0000 | −0.797499 | −0.398750 | − | 0.917060i | \(-0.630556\pi\) | ||||
−0.398750 | + | 0.917060i | \(0.630556\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 8.00000 | 0.288863 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 2.00000 | 0.0721218 | 0.0360609 | − | 0.999350i | \(-0.488519\pi\) | ||||
0.0360609 | + | 0.999350i | \(0.488519\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 18.0000i | − 0.647415i | −0.946157 | − | 0.323708i | \(-0.895071\pi\) | ||||
0.946157 | − | 0.323708i | \(-0.104929\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 8.00000 | 0.287368 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 24.0000i | 0.859889i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 32.0000i | 1.14505i | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −4.00000 | −0.142766 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 28.0000i | 0.998092i | 0.866575 | + | 0.499046i | \(0.166316\pi\) | ||||
−0.866575 | + | 0.499046i | \(0.833684\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −4.00000 | −0.142044 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 22.0000i | − 0.779280i | −0.920967 | − | 0.389640i | \(-0.872599\pi\) | ||||
0.920967 | − | 0.389640i | \(-0.127401\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 40.0000i | − 1.41157i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 26.0000 | 0.914111 | 0.457056 | − | 0.889438i | \(-0.348904\pi\) | ||||
0.457056 | + | 0.889438i | \(0.348904\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 4.00000i | − 0.140459i | −0.997531 | − | 0.0702295i | \(-0.977627\pi\) | ||||
0.997531 | − | 0.0702295i | \(-0.0223732\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 24.0000 | 0.840683 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −16.0000 | −0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 30.0000i | 1.04701i | 0.852023 | + | 0.523504i | \(0.175375\pi\) | ||||
−0.852023 | + | 0.523504i | \(0.824625\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 16.0000 | 0.557725 | 0.278862 | − | 0.960331i | \(-0.410043\pi\) | ||||
0.278862 | + | 0.960331i | \(0.410043\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 28.0000i | − 0.973655i | −0.873498 | − | 0.486828i | \(-0.838154\pi\) | ||||
0.873498 | − | 0.486828i | \(-0.161846\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − 50.0000i | − 1.73657i | −0.496064 | − | 0.868286i | \(-0.665222\pi\) | ||||
0.496064 | − | 0.868286i | \(-0.334778\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14.0000 | 0.485071 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | − 48.0000i | − 1.66111i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −24.0000 | −0.828572 | −0.414286 | − | 0.910147i | \(-0.635969\pi\) | ||||
−0.414286 | + | 0.910147i | \(0.635969\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −7.00000 | −0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | − 18.0000i | − 0.619219i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 48.0000i | 1.64542i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 10.0000i | 0.342393i | 0.985237 | + | 0.171197i | \(0.0547634\pi\) | ||||
−0.985237 | + | 0.171197i | \(0.945237\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 42.0000 | 1.43469 | 0.717346 | − | 0.696717i | \(-0.245357\pi\) | ||||
0.717346 | + | 0.696717i | \(0.245357\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 12.0000i | 0.409435i | 0.978821 | + | 0.204717i | \(0.0656275\pi\) | ||||
−0.978821 | + | 0.204717i | \(0.934372\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 32.0000 | 1.08929 | 0.544646 | − | 0.838666i | \(-0.316664\pi\) | ||||
0.544646 | + | 0.838666i | \(0.316664\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −12.0000 | −0.408012 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 32.0000i | − 1.08553i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −8.00000 | −0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 18.0000i | − 0.607817i | −0.952701 | − | 0.303908i | \(-0.901708\pi\) | ||||
0.952701 | − | 0.303908i | \(-0.0982917\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −50.0000 | −1.68454 | −0.842271 | − | 0.539054i | \(-0.818782\pi\) | ||||
−0.842271 | + | 0.539054i | \(0.818782\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 4.00000i | − 0.134611i | −0.997732 | − | 0.0673054i | \(-0.978560\pi\) | ||||
0.997732 | − | 0.0673054i | \(-0.0214402\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 8.00000 | 0.268614 | 0.134307 | − | 0.990940i | \(-0.457119\pi\) | ||||
0.134307 | + | 0.990940i | \(0.457119\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −24.0000 | −0.802232 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 48.0000i | − 1.60089i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 4.00000i | 0.133259i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −12.0000 | −0.398893 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 4.00000i | − 0.132818i | −0.997792 | − | 0.0664089i | \(-0.978846\pi\) | ||||
0.997792 | − | 0.0664089i | \(-0.0211542\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −16.0000 | −0.530104 | −0.265052 | − | 0.964234i | \(-0.585389\pi\) | ||||
−0.265052 | + | 0.964234i | \(0.585389\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −16.0000 | −0.529523 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −16.0000 | −0.527791 | −0.263896 | − | 0.964551i | \(-0.585007\pi\) | ||||
−0.263896 | + | 0.964551i | \(0.585007\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 16.0000i | − 0.526646i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | − 6.00000i | − 0.197279i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −50.0000 | −1.64045 | −0.820223 | − | 0.572043i | \(-0.806151\pi\) | ||||
−0.820223 | + | 0.572043i | \(0.806151\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 28.0000i | 0.917663i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −16.0000 | −0.523256 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −42.0000 | −1.37208 | −0.686040 | − | 0.727564i | \(-0.740653\pi\) | ||||
−0.686040 | + | 0.727564i | \(0.740653\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 6.00000i | − 0.195594i | −0.995206 | − | 0.0977972i | \(-0.968820\pi\) | ||||
0.995206 | − | 0.0977972i | \(-0.0311797\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 48.0000 | 1.56310 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 12.0000i | − 0.389948i | −0.980808 | − | 0.194974i | \(-0.937538\pi\) | ||||
0.980808 | − | 0.194974i | \(-0.0624622\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 20.0000i | 0.649227i | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −54.0000 | −1.74923 | −0.874616 | − | 0.484817i | \(-0.838886\pi\) | ||||
−0.874616 | + | 0.484817i | \(0.838886\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | − 4.00000i | − 0.128765i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 16.0000 | 0.514525 | 0.257263 | − | 0.966342i | \(-0.417179\pi\) | ||||
0.257263 | + | 0.966342i | \(0.417179\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 36.0000i | 1.15529i | 0.816286 | + | 0.577647i | \(0.196029\pi\) | ||||
−0.816286 | + | 0.577647i | \(0.803971\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 30.0000 | 0.959785 | 0.479893 | − | 0.877327i | \(-0.340676\pi\) | ||||
0.479893 | + | 0.877327i | \(0.340676\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | − 24.0000i | − 0.767043i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −24.0000 | −0.765481 | −0.382741 | − | 0.923856i | \(-0.625020\pi\) | ||||
−0.382741 | + | 0.923856i | \(0.625020\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −36.0000 | −1.14706 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 32.0000i | 1.01754i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 40.0000 | 1.27064 | 0.635321 | − | 0.772248i | \(-0.280868\pi\) | ||||
0.635321 | + | 0.772248i | \(0.280868\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 32.0000i | 1.01447i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 26.0000i | 0.823428i | 0.911313 | + | 0.411714i | \(0.135070\pi\) | ||||
−0.911313 | + | 0.411714i | \(0.864930\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))