# Properties

 Label 2304.2.d.i Level $2304$ Weight $2$ Character orbit 2304.d Analytic conductor $18.398$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2304 = 2^{8} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2304.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$18.3975326257$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 24) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 i q^{5} +O(q^{10})$$ $$q + 2 i q^{5} -4 i q^{11} + 2 i q^{13} -2 q^{17} + 4 i q^{19} -8 q^{23} + q^{25} + 6 i q^{29} + 8 q^{31} + 6 i q^{37} -6 q^{41} + 4 i q^{43} -7 q^{49} + 2 i q^{53} + 8 q^{55} -4 i q^{59} + 2 i q^{61} -4 q^{65} + 4 i q^{67} + 8 q^{71} -10 q^{73} -8 q^{79} -4 i q^{83} -4 i q^{85} -6 q^{89} -8 q^{95} + 2 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + O(q^{10})$$ $$2q - 4q^{17} - 16q^{23} + 2q^{25} + 16q^{31} - 12q^{41} - 14q^{49} + 16q^{55} - 8q^{65} + 16q^{71} - 20q^{73} - 16q^{79} - 12q^{89} - 16q^{95} + 4q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times$$.

 $$n$$ $$1279$$ $$1793$$ $$2053$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1153.1
 − 1.00000i 1.00000i
0 0 0 2.00000i 0 0 0 0 0
1153.2 0 0 0 2.00000i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.2.d.i 2
3.b odd 2 1 768.2.d.e 2
4.b odd 2 1 2304.2.d.k 2
8.b even 2 1 inner 2304.2.d.i 2
8.d odd 2 1 2304.2.d.k 2
12.b even 2 1 768.2.d.d 2
16.e even 4 1 72.2.a.a 1
16.e even 4 1 576.2.a.d 1
16.f odd 4 1 144.2.a.b 1
16.f odd 4 1 576.2.a.b 1
24.f even 2 1 768.2.d.d 2
24.h odd 2 1 768.2.d.e 2
48.i odd 4 1 24.2.a.a 1
48.i odd 4 1 192.2.a.d 1
48.k even 4 1 48.2.a.a 1
48.k even 4 1 192.2.a.b 1
80.i odd 4 1 1800.2.f.c 2
80.j even 4 1 3600.2.f.r 2
80.k odd 4 1 3600.2.a.v 1
80.q even 4 1 1800.2.a.m 1
80.s even 4 1 3600.2.f.r 2
80.t odd 4 1 1800.2.f.c 2
112.j even 4 1 7056.2.a.q 1
112.l odd 4 1 3528.2.a.d 1
112.w even 12 2 3528.2.s.j 2
112.x odd 12 2 3528.2.s.y 2
144.u even 12 2 1296.2.i.m 2
144.v odd 12 2 1296.2.i.e 2
144.w odd 12 2 648.2.i.g 2
144.x even 12 2 648.2.i.b 2
176.l odd 4 1 8712.2.a.u 1
240.t even 4 1 1200.2.a.d 1
240.t even 4 1 4800.2.a.cc 1
240.z odd 4 1 1200.2.f.b 2
240.z odd 4 1 4800.2.f.bg 2
240.bb even 4 1 600.2.f.e 2
240.bb even 4 1 4800.2.f.d 2
240.bd odd 4 1 1200.2.f.b 2
240.bd odd 4 1 4800.2.f.bg 2
240.bf even 4 1 600.2.f.e 2
240.bf even 4 1 4800.2.f.d 2
240.bm odd 4 1 600.2.a.h 1
240.bm odd 4 1 4800.2.a.q 1
336.v odd 4 1 2352.2.a.i 1
336.v odd 4 1 9408.2.a.cc 1
336.y even 4 1 1176.2.a.i 1
336.y even 4 1 9408.2.a.h 1
336.bo even 12 2 1176.2.q.a 2
336.br odd 12 2 2352.2.q.r 2
336.bt odd 12 2 1176.2.q.i 2
336.bu even 12 2 2352.2.q.l 2
528.s odd 4 1 5808.2.a.s 1
528.x even 4 1 2904.2.a.c 1
624.u even 4 1 4056.2.c.e 2
624.v even 4 1 8112.2.a.be 1
624.bi odd 4 1 4056.2.a.i 1
624.bm even 4 1 4056.2.c.e 2
816.bg odd 4 1 6936.2.a.p 1
912.r even 4 1 8664.2.a.j 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.2.a.a 1 48.i odd 4 1
48.2.a.a 1 48.k even 4 1
72.2.a.a 1 16.e even 4 1
144.2.a.b 1 16.f odd 4 1
192.2.a.b 1 48.k even 4 1
192.2.a.d 1 48.i odd 4 1
576.2.a.b 1 16.f odd 4 1
576.2.a.d 1 16.e even 4 1
600.2.a.h 1 240.bm odd 4 1
600.2.f.e 2 240.bb even 4 1
600.2.f.e 2 240.bf even 4 1
648.2.i.b 2 144.x even 12 2
648.2.i.g 2 144.w odd 12 2
768.2.d.d 2 12.b even 2 1
768.2.d.d 2 24.f even 2 1
768.2.d.e 2 3.b odd 2 1
768.2.d.e 2 24.h odd 2 1
1176.2.a.i 1 336.y even 4 1
1176.2.q.a 2 336.bo even 12 2
1176.2.q.i 2 336.bt odd 12 2
1200.2.a.d 1 240.t even 4 1
1200.2.f.b 2 240.z odd 4 1
1200.2.f.b 2 240.bd odd 4 1
1296.2.i.e 2 144.v odd 12 2
1296.2.i.m 2 144.u even 12 2
1800.2.a.m 1 80.q even 4 1
1800.2.f.c 2 80.i odd 4 1
1800.2.f.c 2 80.t odd 4 1
2304.2.d.i 2 1.a even 1 1 trivial
2304.2.d.i 2 8.b even 2 1 inner
2304.2.d.k 2 4.b odd 2 1
2304.2.d.k 2 8.d odd 2 1
2352.2.a.i 1 336.v odd 4 1
2352.2.q.l 2 336.bu even 12 2
2352.2.q.r 2 336.br odd 12 2
2904.2.a.c 1 528.x even 4 1
3528.2.a.d 1 112.l odd 4 1
3528.2.s.j 2 112.w even 12 2
3528.2.s.y 2 112.x odd 12 2
3600.2.a.v 1 80.k odd 4 1
3600.2.f.r 2 80.j even 4 1
3600.2.f.r 2 80.s even 4 1
4056.2.a.i 1 624.bi odd 4 1
4056.2.c.e 2 624.u even 4 1
4056.2.c.e 2 624.bm even 4 1
4800.2.a.q 1 240.bm odd 4 1
4800.2.a.cc 1 240.t even 4 1
4800.2.f.d 2 240.bb even 4 1
4800.2.f.d 2 240.bf even 4 1
4800.2.f.bg 2 240.z odd 4 1
4800.2.f.bg 2 240.bd odd 4 1
5808.2.a.s 1 528.s odd 4 1
6936.2.a.p 1 816.bg odd 4 1
7056.2.a.q 1 112.j even 4 1
8112.2.a.be 1 624.v even 4 1
8664.2.a.j 1 912.r even 4 1
8712.2.a.u 1 176.l odd 4 1
9408.2.a.h 1 336.y even 4 1
9408.2.a.cc 1 336.v odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2304, [\chi])$$:

 $$T_{5}^{2} + 4$$ $$T_{7}$$ $$T_{11}^{2} + 16$$ $$T_{17} + 2$$ $$T_{23} + 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$( 1 - 4 T + 5 T^{2} )( 1 + 4 T + 5 T^{2} )$$
$7$ $$( 1 + 7 T^{2} )^{2}$$
$11$ $$1 - 6 T^{2} + 121 T^{4}$$
$13$ $$1 - 22 T^{2} + 169 T^{4}$$
$17$ $$( 1 + 2 T + 17 T^{2} )^{2}$$
$19$ $$1 - 22 T^{2} + 361 T^{4}$$
$23$ $$( 1 + 8 T + 23 T^{2} )^{2}$$
$29$ $$1 - 22 T^{2} + 841 T^{4}$$
$31$ $$( 1 - 8 T + 31 T^{2} )^{2}$$
$37$ $$1 - 38 T^{2} + 1369 T^{4}$$
$41$ $$( 1 + 6 T + 41 T^{2} )^{2}$$
$43$ $$1 - 70 T^{2} + 1849 T^{4}$$
$47$ $$( 1 + 47 T^{2} )^{2}$$
$53$ $$1 - 102 T^{2} + 2809 T^{4}$$
$59$ $$1 - 102 T^{2} + 3481 T^{4}$$
$61$ $$1 - 118 T^{2} + 3721 T^{4}$$
$67$ $$1 - 118 T^{2} + 4489 T^{4}$$
$71$ $$( 1 - 8 T + 71 T^{2} )^{2}$$
$73$ $$( 1 + 10 T + 73 T^{2} )^{2}$$
$79$ $$( 1 + 8 T + 79 T^{2} )^{2}$$
$83$ $$1 - 150 T^{2} + 6889 T^{4}$$
$89$ $$( 1 + 6 T + 89 T^{2} )^{2}$$
$97$ $$( 1 - 2 T + 97 T^{2} )^{2}$$