Defining parameters
Level: | \( N \) | \(=\) | \( 2304 = 2^{8} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2304.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 19 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(23\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(17\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2304, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 432 | 42 | 390 |
Cusp forms | 336 | 38 | 298 |
Eisenstein series | 96 | 4 | 92 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2304, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2304, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2304, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(768, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 2}\)