Properties

Label 2304.2.bz
Level $2304$
Weight $2$
Character orbit 2304.bz
Rep. character $\chi_{2304}(25,\cdot)$
Character field $\Q(\zeta_{96})$
Dimension $0$
Newform subspaces $0$
Sturm bound $768$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.bz (of order \(96\) and degree \(32\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1152 \)
Character field: \(\Q(\zeta_{96})\)
Newform subspaces: \( 0 \)
Sturm bound: \(768\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2304, [\chi])\).

Total New Old
Modular forms 12416 0 12416
Cusp forms 12160 0 12160
Eisenstein series 256 0 256

Decomposition of \(S_{2}^{\mathrm{old}}(2304, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2304, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database