Properties

Label 2304.2.bl
Level $2304$
Weight $2$
Character orbit 2304.bl
Rep. character $\chi_{2304}(73,\cdot)$
Character field $\Q(\zeta_{32})$
Dimension $0$
Newform subspaces $0$
Sturm bound $768$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.bl (of order \(32\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 128 \)
Character field: \(\Q(\zeta_{32})\)
Newform subspaces: \( 0 \)
Sturm bound: \(768\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2304, [\chi])\).

Total New Old
Modular forms 6272 0 6272
Cusp forms 6016 0 6016
Eisenstein series 256 0 256

Decomposition of \(S_{2}^{\mathrm{old}}(2304, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2304, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database