Properties

Label 2304.2.be
Level $2304$
Weight $2$
Character orbit 2304.be
Rep. character $\chi_{2304}(143,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $256$
Sturm bound $768$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.be (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 192 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2304, [\chi])\).

Total New Old
Modular forms 3200 256 2944
Cusp forms 2944 256 2688
Eisenstein series 256 0 256

Trace form

\( 256q + O(q^{10}) \) \( 256q - 128q^{55} - 64q^{67} - 64q^{79} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2304, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2304, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2304, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(768, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database