Properties

Label 2304.2.bb
Level $2304$
Weight $2$
Character orbit 2304.bb
Rep. character $\chi_{2304}(193,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $384$
Sturm bound $768$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.bb (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 144 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2304, [\chi])\).

Total New Old
Modular forms 1632 384 1248
Cusp forms 1440 384 1056
Eisenstein series 192 0 192

Trace form

\( 384q + O(q^{10}) \) \( 384q + 192q^{49} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2304, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2304, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2304, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database