# Properties

 Label 2304.2.a.b.1.1 Level $2304$ Weight $2$ Character 2304.1 Self dual yes Analytic conductor $18.398$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2304,2,Mod(1,2304)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2304, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2304.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2304 = 2^{8} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2304.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$18.3975326257$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 24) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 2304.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-2.00000 q^{5} -2.00000 q^{7} +O(q^{10})$$ $$q-2.00000 q^{5} -2.00000 q^{7} +4.00000 q^{13} +2.00000 q^{17} +4.00000 q^{19} -4.00000 q^{23} -1.00000 q^{25} -6.00000 q^{29} -2.00000 q^{31} +4.00000 q^{35} +8.00000 q^{37} +2.00000 q^{41} +4.00000 q^{43} -12.0000 q^{47} -3.00000 q^{49} -6.00000 q^{53} +4.00000 q^{59} -8.00000 q^{65} -12.0000 q^{67} -12.0000 q^{71} +6.00000 q^{73} -10.0000 q^{79} -16.0000 q^{83} -4.00000 q^{85} -10.0000 q^{89} -8.00000 q^{91} -8.00000 q^{95} -2.00000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −2.00000 −0.894427 −0.447214 0.894427i $$-0.647584\pi$$
−0.447214 + 0.894427i $$0.647584\pi$$
$$6$$ 0 0
$$7$$ −2.00000 −0.755929 −0.377964 0.925820i $$-0.623376\pi$$
−0.377964 + 0.925820i $$0.623376\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ 0 0
$$13$$ 4.00000 1.10940 0.554700 0.832050i $$-0.312833\pi$$
0.554700 + 0.832050i $$0.312833\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 2.00000 0.485071 0.242536 0.970143i $$-0.422021\pi$$
0.242536 + 0.970143i $$0.422021\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −4.00000 −0.834058 −0.417029 0.908893i $$-0.636929\pi$$
−0.417029 + 0.908893i $$0.636929\pi$$
$$24$$ 0 0
$$25$$ −1.00000 −0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −2.00000 −0.359211 −0.179605 0.983739i $$-0.557482\pi$$
−0.179605 + 0.983739i $$0.557482\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 4.00000 0.676123
$$36$$ 0 0
$$37$$ 8.00000 1.31519 0.657596 0.753371i $$-0.271573\pi$$
0.657596 + 0.753371i $$0.271573\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 2.00000 0.312348 0.156174 0.987730i $$-0.450084\pi$$
0.156174 + 0.987730i $$0.450084\pi$$
$$42$$ 0 0
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −12.0000 −1.75038 −0.875190 0.483779i $$-0.839264\pi$$
−0.875190 + 0.483779i $$0.839264\pi$$
$$48$$ 0 0
$$49$$ −3.00000 −0.428571
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 4.00000 0.520756 0.260378 0.965507i $$-0.416153\pi$$
0.260378 + 0.965507i $$0.416153\pi$$
$$60$$ 0 0
$$61$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −8.00000 −0.992278
$$66$$ 0 0
$$67$$ −12.0000 −1.46603 −0.733017 0.680211i $$-0.761888\pi$$
−0.733017 + 0.680211i $$0.761888\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −12.0000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ 6.00000 0.702247 0.351123 0.936329i $$-0.385800\pi$$
0.351123 + 0.936329i $$0.385800\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −10.0000 −1.12509 −0.562544 0.826767i $$-0.690177\pi$$
−0.562544 + 0.826767i $$0.690177\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −16.0000 −1.75623 −0.878114 0.478451i $$-0.841198\pi$$
−0.878114 + 0.478451i $$0.841198\pi$$
$$84$$ 0 0
$$85$$ −4.00000 −0.433861
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −10.0000 −1.06000 −0.529999 0.847998i $$-0.677808\pi$$
−0.529999 + 0.847998i $$0.677808\pi$$
$$90$$ 0 0
$$91$$ −8.00000 −0.838628
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −8.00000 −0.820783
$$96$$ 0 0
$$97$$ −2.00000 −0.203069 −0.101535 0.994832i $$-0.532375\pi$$
−0.101535 + 0.994832i $$0.532375\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 10.0000 0.995037 0.497519 0.867453i $$-0.334245\pi$$
0.497519 + 0.867453i $$0.334245\pi$$
$$102$$ 0 0
$$103$$ −6.00000 −0.591198 −0.295599 0.955312i $$-0.595519\pi$$
−0.295599 + 0.955312i $$0.595519\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −12.0000 −1.16008 −0.580042 0.814587i $$-0.696964\pi$$
−0.580042 + 0.814587i $$0.696964\pi$$
$$108$$ 0 0
$$109$$ −4.00000 −0.383131 −0.191565 0.981480i $$-0.561356\pi$$
−0.191565 + 0.981480i $$0.561356\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 6.00000 0.564433 0.282216 0.959351i $$-0.408930\pi$$
0.282216 + 0.959351i $$0.408930\pi$$
$$114$$ 0 0
$$115$$ 8.00000 0.746004
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −4.00000 −0.366679
$$120$$ 0 0
$$121$$ −11.0000 −1.00000
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 12.0000 1.07331
$$126$$ 0 0
$$127$$ 2.00000 0.177471 0.0887357 0.996055i $$-0.471717\pi$$
0.0887357 + 0.996055i $$0.471717\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 20.0000 1.74741 0.873704 0.486458i $$-0.161711\pi$$
0.873704 + 0.486458i $$0.161711\pi$$
$$132$$ 0 0
$$133$$ −8.00000 −0.693688
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 18.0000 1.53784 0.768922 0.639343i $$-0.220793\pi$$
0.768922 + 0.639343i $$0.220793\pi$$
$$138$$ 0 0
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 12.0000 0.996546
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 6.00000 0.491539 0.245770 0.969328i $$-0.420959\pi$$
0.245770 + 0.969328i $$0.420959\pi$$
$$150$$ 0 0
$$151$$ −18.0000 −1.46482 −0.732410 0.680864i $$-0.761604\pi$$
−0.732410 + 0.680864i $$0.761604\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 4.00000 0.321288
$$156$$ 0 0
$$157$$ −8.00000 −0.638470 −0.319235 0.947676i $$-0.603426\pi$$
−0.319235 + 0.947676i $$0.603426\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 8.00000 0.630488
$$162$$ 0 0
$$163$$ −4.00000 −0.313304 −0.156652 0.987654i $$-0.550070\pi$$
−0.156652 + 0.987654i $$0.550070\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −8.00000 −0.619059 −0.309529 0.950890i $$-0.600171\pi$$
−0.309529 + 0.950890i $$0.600171\pi$$
$$168$$ 0 0
$$169$$ 3.00000 0.230769
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 6.00000 0.456172 0.228086 0.973641i $$-0.426753\pi$$
0.228086 + 0.973641i $$0.426753\pi$$
$$174$$ 0 0
$$175$$ 2.00000 0.151186
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −4.00000 −0.298974 −0.149487 0.988764i $$-0.547762\pi$$
−0.149487 + 0.988764i $$0.547762\pi$$
$$180$$ 0 0
$$181$$ −20.0000 −1.48659 −0.743294 0.668965i $$-0.766738\pi$$
−0.743294 + 0.668965i $$0.766738\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −16.0000 −1.17634
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −8.00000 −0.578860 −0.289430 0.957199i $$-0.593466\pi$$
−0.289430 + 0.957199i $$0.593466\pi$$
$$192$$ 0 0
$$193$$ −6.00000 −0.431889 −0.215945 0.976406i $$-0.569283\pi$$
−0.215945 + 0.976406i $$0.569283\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 2.00000 0.142494 0.0712470 0.997459i $$-0.477302\pi$$
0.0712470 + 0.997459i $$0.477302\pi$$
$$198$$ 0 0
$$199$$ 10.0000 0.708881 0.354441 0.935079i $$-0.384671\pi$$
0.354441 + 0.935079i $$0.384671\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 12.0000 0.842235
$$204$$ 0 0
$$205$$ −4.00000 −0.279372
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 20.0000 1.37686 0.688428 0.725304i $$-0.258301\pi$$
0.688428 + 0.725304i $$0.258301\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −8.00000 −0.545595
$$216$$ 0 0
$$217$$ 4.00000 0.271538
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 8.00000 0.538138
$$222$$ 0 0
$$223$$ −14.0000 −0.937509 −0.468755 0.883328i $$-0.655297\pi$$
−0.468755 + 0.883328i $$0.655297\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −8.00000 −0.530979 −0.265489 0.964114i $$-0.585534\pi$$
−0.265489 + 0.964114i $$0.585534\pi$$
$$228$$ 0 0
$$229$$ 4.00000 0.264327 0.132164 0.991228i $$-0.457808\pi$$
0.132164 + 0.991228i $$0.457808\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 14.0000 0.917170 0.458585 0.888650i $$-0.348356\pi$$
0.458585 + 0.888650i $$0.348356\pi$$
$$234$$ 0 0
$$235$$ 24.0000 1.56559
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ 2.00000 0.128831 0.0644157 0.997923i $$-0.479482\pi$$
0.0644157 + 0.997923i $$0.479482\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 6.00000 0.383326
$$246$$ 0 0
$$247$$ 16.0000 1.01806
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −18.0000 −1.12281 −0.561405 0.827541i $$-0.689739\pi$$
−0.561405 + 0.827541i $$0.689739\pi$$
$$258$$ 0 0
$$259$$ −16.0000 −0.994192
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 16.0000 0.986602 0.493301 0.869859i $$-0.335790\pi$$
0.493301 + 0.869859i $$0.335790\pi$$
$$264$$ 0 0
$$265$$ 12.0000 0.737154
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −6.00000 −0.365826 −0.182913 0.983129i $$-0.558553\pi$$
−0.182913 + 0.983129i $$0.558553\pi$$
$$270$$ 0 0
$$271$$ 18.0000 1.09342 0.546711 0.837321i $$-0.315880\pi$$
0.546711 + 0.837321i $$0.315880\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 28.0000 1.68236 0.841178 0.540758i $$-0.181862\pi$$
0.841178 + 0.540758i $$0.181862\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −18.0000 −1.07379 −0.536895 0.843649i $$-0.680403\pi$$
−0.536895 + 0.843649i $$0.680403\pi$$
$$282$$ 0 0
$$283$$ 4.00000 0.237775 0.118888 0.992908i $$-0.462067\pi$$
0.118888 + 0.992908i $$0.462067\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −4.00000 −0.236113
$$288$$ 0 0
$$289$$ −13.0000 −0.764706
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −6.00000 −0.350524 −0.175262 0.984522i $$-0.556077\pi$$
−0.175262 + 0.984522i $$0.556077\pi$$
$$294$$ 0 0
$$295$$ −8.00000 −0.465778
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −16.0000 −0.925304
$$300$$ 0 0
$$301$$ −8.00000 −0.461112
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −12.0000 −0.684876 −0.342438 0.939540i $$-0.611253\pi$$
−0.342438 + 0.939540i $$0.611253\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 8.00000 0.453638 0.226819 0.973937i $$-0.427167\pi$$
0.226819 + 0.973937i $$0.427167\pi$$
$$312$$ 0 0
$$313$$ −14.0000 −0.791327 −0.395663 0.918396i $$-0.629485\pi$$
−0.395663 + 0.918396i $$0.629485\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −22.0000 −1.23564 −0.617822 0.786318i $$-0.711985\pi$$
−0.617822 + 0.786318i $$0.711985\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 8.00000 0.445132
$$324$$ 0 0
$$325$$ −4.00000 −0.221880
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 24.0000 1.32316
$$330$$ 0 0
$$331$$ −20.0000 −1.09930 −0.549650 0.835395i $$-0.685239\pi$$
−0.549650 + 0.835395i $$0.685239\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 24.0000 1.31126
$$336$$ 0 0
$$337$$ −2.00000 −0.108947 −0.0544735 0.998515i $$-0.517348\pi$$
−0.0544735 + 0.998515i $$0.517348\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 20.0000 1.07990
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 8.00000 0.429463 0.214731 0.976673i $$-0.431112\pi$$
0.214731 + 0.976673i $$0.431112\pi$$
$$348$$ 0 0
$$349$$ 16.0000 0.856460 0.428230 0.903670i $$-0.359137\pi$$
0.428230 + 0.903670i $$0.359137\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 6.00000 0.319348 0.159674 0.987170i $$-0.448956\pi$$
0.159674 + 0.987170i $$0.448956\pi$$
$$354$$ 0 0
$$355$$ 24.0000 1.27379
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 20.0000 1.05556 0.527780 0.849381i $$-0.323025\pi$$
0.527780 + 0.849381i $$0.323025\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −12.0000 −0.628109
$$366$$ 0 0
$$367$$ −18.0000 −0.939592 −0.469796 0.882775i $$-0.655673\pi$$
−0.469796 + 0.882775i $$0.655673\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 12.0000 0.623009
$$372$$ 0 0
$$373$$ 16.0000 0.828449 0.414224 0.910175i $$-0.364053\pi$$
0.414224 + 0.910175i $$0.364053\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −24.0000 −1.23606
$$378$$ 0 0
$$379$$ −4.00000 −0.205466 −0.102733 0.994709i $$-0.532759\pi$$
−0.102733 + 0.994709i $$0.532759\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 24.0000 1.22634 0.613171 0.789950i $$-0.289894\pi$$
0.613171 + 0.789950i $$0.289894\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −34.0000 −1.72387 −0.861934 0.507020i $$-0.830747\pi$$
−0.861934 + 0.507020i $$0.830747\pi$$
$$390$$ 0 0
$$391$$ −8.00000 −0.404577
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 20.0000 1.00631
$$396$$ 0 0
$$397$$ 32.0000 1.60603 0.803017 0.595956i $$-0.203227\pi$$
0.803017 + 0.595956i $$0.203227\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 18.0000 0.898877 0.449439 0.893311i $$-0.351624\pi$$
0.449439 + 0.893311i $$0.351624\pi$$
$$402$$ 0 0
$$403$$ −8.00000 −0.398508
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ −10.0000 −0.494468 −0.247234 0.968956i $$-0.579522\pi$$
−0.247234 + 0.968956i $$0.579522\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −8.00000 −0.393654
$$414$$ 0 0
$$415$$ 32.0000 1.57082
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −24.0000 −1.17248 −0.586238 0.810139i $$-0.699392\pi$$
−0.586238 + 0.810139i $$0.699392\pi$$
$$420$$ 0 0
$$421$$ −20.0000 −0.974740 −0.487370 0.873195i $$-0.662044\pi$$
−0.487370 + 0.873195i $$0.662044\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −2.00000 −0.0970143
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 12.0000 0.578020 0.289010 0.957326i $$-0.406674\pi$$
0.289010 + 0.957326i $$0.406674\pi$$
$$432$$ 0 0
$$433$$ 14.0000 0.672797 0.336399 0.941720i $$-0.390791\pi$$
0.336399 + 0.941720i $$0.390791\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −16.0000 −0.765384
$$438$$ 0 0
$$439$$ −30.0000 −1.43182 −0.715911 0.698192i $$-0.753988\pi$$
−0.715911 + 0.698192i $$0.753988\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −24.0000 −1.14027 −0.570137 0.821549i $$-0.693110\pi$$
−0.570137 + 0.821549i $$0.693110\pi$$
$$444$$ 0 0
$$445$$ 20.0000 0.948091
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −30.0000 −1.41579 −0.707894 0.706319i $$-0.750354\pi$$
−0.707894 + 0.706319i $$0.750354\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 16.0000 0.750092
$$456$$ 0 0
$$457$$ 22.0000 1.02912 0.514558 0.857455i $$-0.327956\pi$$
0.514558 + 0.857455i $$0.327956\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 30.0000 1.39724 0.698620 0.715493i $$-0.253798\pi$$
0.698620 + 0.715493i $$0.253798\pi$$
$$462$$ 0 0
$$463$$ 26.0000 1.20832 0.604161 0.796862i $$-0.293508\pi$$
0.604161 + 0.796862i $$0.293508\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −8.00000 −0.370196 −0.185098 0.982720i $$-0.559260\pi$$
−0.185098 + 0.982720i $$0.559260\pi$$
$$468$$ 0 0
$$469$$ 24.0000 1.10822
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ −4.00000 −0.183533
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 20.0000 0.913823 0.456912 0.889512i $$-0.348956\pi$$
0.456912 + 0.889512i $$0.348956\pi$$
$$480$$ 0 0
$$481$$ 32.0000 1.45907
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 4.00000 0.181631
$$486$$ 0 0
$$487$$ 38.0000 1.72194 0.860972 0.508652i $$-0.169856\pi$$
0.860972 + 0.508652i $$0.169856\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −20.0000 −0.902587 −0.451294 0.892375i $$-0.649037\pi$$
−0.451294 + 0.892375i $$0.649037\pi$$
$$492$$ 0 0
$$493$$ −12.0000 −0.540453
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 24.0000 1.07655
$$498$$ 0 0
$$499$$ −36.0000 −1.61158 −0.805791 0.592200i $$-0.798259\pi$$
−0.805791 + 0.592200i $$0.798259\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 36.0000 1.60516 0.802580 0.596544i $$-0.203460\pi$$
0.802580 + 0.596544i $$0.203460\pi$$
$$504$$ 0 0
$$505$$ −20.0000 −0.889988
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −6.00000 −0.265945 −0.132973 0.991120i $$-0.542452\pi$$
−0.132973 + 0.991120i $$0.542452\pi$$
$$510$$ 0 0
$$511$$ −12.0000 −0.530849
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 12.0000 0.528783
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 42.0000 1.84005 0.920027 0.391856i $$-0.128167\pi$$
0.920027 + 0.391856i $$0.128167\pi$$
$$522$$ 0 0
$$523$$ −36.0000 −1.57417 −0.787085 0.616844i $$-0.788411\pi$$
−0.787085 + 0.616844i $$0.788411\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −4.00000 −0.174243
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 8.00000 0.346518
$$534$$ 0 0
$$535$$ 24.0000 1.03761
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −20.0000 −0.859867 −0.429934 0.902861i $$-0.641463\pi$$
−0.429934 + 0.902861i $$0.641463\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 8.00000 0.342682
$$546$$ 0 0
$$547$$ 28.0000 1.19719 0.598597 0.801050i $$-0.295725\pi$$
0.598597 + 0.801050i $$0.295725\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −24.0000 −1.02243
$$552$$ 0 0
$$553$$ 20.0000 0.850487
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −42.0000 −1.77960 −0.889799 0.456354i $$-0.849155\pi$$
−0.889799 + 0.456354i $$0.849155\pi$$
$$558$$ 0 0
$$559$$ 16.0000 0.676728
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 24.0000 1.01148 0.505740 0.862686i $$-0.331220\pi$$
0.505740 + 0.862686i $$0.331220\pi$$
$$564$$ 0 0
$$565$$ −12.0000 −0.504844
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −30.0000 −1.25767 −0.628833 0.777541i $$-0.716467\pi$$
−0.628833 + 0.777541i $$0.716467\pi$$
$$570$$ 0 0
$$571$$ 20.0000 0.836974 0.418487 0.908223i $$-0.362561\pi$$
0.418487 + 0.908223i $$0.362561\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 4.00000 0.166812
$$576$$ 0 0
$$577$$ −42.0000 −1.74848 −0.874241 0.485491i $$-0.838641\pi$$
−0.874241 + 0.485491i $$0.838641\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 32.0000 1.32758
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 28.0000 1.15568 0.577842 0.816149i $$-0.303895\pi$$
0.577842 + 0.816149i $$0.303895\pi$$
$$588$$ 0 0
$$589$$ −8.00000 −0.329634
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 6.00000 0.246390 0.123195 0.992382i $$-0.460686\pi$$
0.123195 + 0.992382i $$0.460686\pi$$
$$594$$ 0 0
$$595$$ 8.00000 0.327968
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 20.0000 0.817178 0.408589 0.912719i $$-0.366021\pi$$
0.408589 + 0.912719i $$0.366021\pi$$
$$600$$ 0 0
$$601$$ −2.00000 −0.0815817 −0.0407909 0.999168i $$-0.512988\pi$$
−0.0407909 + 0.999168i $$0.512988\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 22.0000 0.894427
$$606$$ 0 0
$$607$$ 2.00000 0.0811775 0.0405887 0.999176i $$-0.487077\pi$$
0.0405887 + 0.999176i $$0.487077\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −48.0000 −1.94187
$$612$$ 0 0
$$613$$ 16.0000 0.646234 0.323117 0.946359i $$-0.395269\pi$$
0.323117 + 0.946359i $$0.395269\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −2.00000 −0.0805170 −0.0402585 0.999189i $$-0.512818\pi$$
−0.0402585 + 0.999189i $$0.512818\pi$$
$$618$$ 0 0
$$619$$ 36.0000 1.44696 0.723481 0.690344i $$-0.242541\pi$$
0.723481 + 0.690344i $$0.242541\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 20.0000 0.801283
$$624$$ 0 0
$$625$$ −19.0000 −0.760000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 16.0000 0.637962
$$630$$ 0 0
$$631$$ 22.0000 0.875806 0.437903 0.899022i $$-0.355721\pi$$
0.437903 + 0.899022i $$0.355721\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −4.00000 −0.158735
$$636$$ 0 0
$$637$$ −12.0000 −0.475457
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −22.0000 −0.868948 −0.434474 0.900684i $$-0.643066\pi$$
−0.434474 + 0.900684i $$0.643066\pi$$
$$642$$ 0 0
$$643$$ −4.00000 −0.157745 −0.0788723 0.996885i $$-0.525132\pi$$
−0.0788723 + 0.996885i $$0.525132\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 12.0000 0.471769 0.235884 0.971781i $$-0.424201\pi$$
0.235884 + 0.971781i $$0.424201\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 6.00000 0.234798 0.117399 0.993085i $$-0.462544\pi$$
0.117399 + 0.993085i $$0.462544\pi$$
$$654$$ 0 0
$$655$$ −40.0000 −1.56293
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 36.0000 1.40236 0.701180 0.712984i $$-0.252657\pi$$
0.701180 + 0.712984i $$0.252657\pi$$
$$660$$ 0 0
$$661$$ −40.0000 −1.55582 −0.777910 0.628376i $$-0.783720\pi$$
−0.777910 + 0.628376i $$0.783720\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 16.0000 0.620453
$$666$$ 0 0
$$667$$ 24.0000 0.929284
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 14.0000 0.539660 0.269830 0.962908i $$-0.413032\pi$$
0.269830 + 0.962908i $$0.413032\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −18.0000 −0.691796 −0.345898 0.938272i $$-0.612426\pi$$
−0.345898 + 0.938272i $$0.612426\pi$$
$$678$$ 0 0
$$679$$ 4.00000 0.153506
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 16.0000 0.612223 0.306111 0.951996i $$-0.400972\pi$$
0.306111 + 0.951996i $$0.400972\pi$$
$$684$$ 0 0
$$685$$ −36.0000 −1.37549
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −24.0000 −0.914327
$$690$$ 0 0
$$691$$ −20.0000 −0.760836 −0.380418 0.924815i $$-0.624220\pi$$
−0.380418 + 0.924815i $$0.624220\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 8.00000 0.303457
$$696$$ 0 0
$$697$$ 4.00000 0.151511
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 50.0000 1.88847 0.944237 0.329267i $$-0.106802\pi$$
0.944237 + 0.329267i $$0.106802\pi$$
$$702$$ 0 0
$$703$$ 32.0000 1.20690
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −20.0000 −0.752177
$$708$$ 0 0
$$709$$ 4.00000 0.150223 0.0751116 0.997175i $$-0.476069\pi$$
0.0751116 + 0.997175i $$0.476069\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 8.00000 0.299602
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −20.0000 −0.745874 −0.372937 0.927857i $$-0.621649\pi$$
−0.372937 + 0.927857i $$0.621649\pi$$
$$720$$ 0 0
$$721$$ 12.0000 0.446903
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 6.00000 0.222834
$$726$$ 0 0
$$727$$ −42.0000 −1.55769 −0.778847 0.627214i $$-0.784195\pi$$
−0.778847 + 0.627214i $$0.784195\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 8.00000 0.295891
$$732$$ 0 0
$$733$$ 4.00000 0.147743 0.0738717 0.997268i $$-0.476464\pi$$
0.0738717 + 0.997268i $$0.476464\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 44.0000 1.61857 0.809283 0.587419i $$-0.199856\pi$$
0.809283 + 0.587419i $$0.199856\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 16.0000 0.586983 0.293492 0.955962i $$-0.405183\pi$$
0.293492 + 0.955962i $$0.405183\pi$$
$$744$$ 0 0
$$745$$ −12.0000 −0.439646
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 24.0000 0.876941
$$750$$ 0 0
$$751$$ −2.00000 −0.0729810 −0.0364905 0.999334i $$-0.511618\pi$$
−0.0364905 + 0.999334i $$0.511618\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 36.0000 1.31017
$$756$$ 0 0
$$757$$ −12.0000 −0.436147 −0.218074 0.975932i $$-0.569977\pi$$
−0.218074 + 0.975932i $$0.569977\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −38.0000 −1.37750 −0.688749 0.724999i $$-0.741840\pi$$
−0.688749 + 0.724999i $$0.741840\pi$$
$$762$$ 0 0
$$763$$ 8.00000 0.289619
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 16.0000 0.577727
$$768$$ 0 0
$$769$$ 10.0000 0.360609 0.180305 0.983611i $$-0.442292\pi$$
0.180305 + 0.983611i $$0.442292\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 34.0000 1.22290 0.611448 0.791285i $$-0.290588\pi$$
0.611448 + 0.791285i $$0.290588\pi$$
$$774$$ 0 0
$$775$$ 2.00000 0.0718421
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 8.00000 0.286630
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 16.0000 0.571064
$$786$$ 0 0
$$787$$ −12.0000 −0.427754 −0.213877 0.976861i $$-0.568609\pi$$
−0.213877 + 0.976861i $$0.568609\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −12.0000 −0.426671
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −2.00000 −0.0708436 −0.0354218 0.999372i $$-0.511277\pi$$
−0.0354218 + 0.999372i $$0.511277\pi$$
$$798$$ 0 0
$$799$$ −24.0000 −0.849059
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ −16.0000 −0.563926
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −30.0000 −1.05474 −0.527372 0.849635i $$-0.676823\pi$$
−0.527372 + 0.849635i $$0.676823\pi$$
$$810$$ 0 0
$$811$$ −20.0000 −0.702295 −0.351147 0.936320i $$-0.614208\pi$$
−0.351147 + 0.936320i $$0.614208\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 8.00000 0.280228
$$816$$ 0 0
$$817$$ 16.0000 0.559769
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 10.0000 0.349002 0.174501 0.984657i $$-0.444169\pi$$
0.174501 + 0.984657i $$0.444169\pi$$
$$822$$ 0 0
$$823$$ 14.0000 0.488009 0.244005 0.969774i $$-0.421539\pi$$
0.244005 + 0.969774i $$0.421539\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −12.0000 −0.417281 −0.208640 0.977992i $$-0.566904\pi$$
−0.208640 + 0.977992i $$0.566904\pi$$
$$828$$ 0 0
$$829$$ −4.00000 −0.138926 −0.0694629 0.997585i $$-0.522129\pi$$
−0.0694629 + 0.997585i $$0.522129\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −6.00000 −0.207888
$$834$$ 0 0
$$835$$ 16.0000 0.553703
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ −20.0000 −0.690477 −0.345238 0.938515i $$-0.612202\pi$$
−0.345238 + 0.938515i $$0.612202\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ −6.00000 −0.206406
$$846$$ 0 0
$$847$$ 22.0000 0.755929
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −32.0000 −1.09695
$$852$$ 0 0
$$853$$ −24.0000 −0.821744 −0.410872 0.911693i $$-0.634776\pi$$
−0.410872 + 0.911693i $$0.634776\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 18.0000 0.614868 0.307434 0.951569i $$-0.400530\pi$$
0.307434 + 0.951569i $$0.400530\pi$$
$$858$$ 0 0
$$859$$ −44.0000 −1.50126 −0.750630 0.660722i $$-0.770250\pi$$
−0.750630 + 0.660722i $$0.770250\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 24.0000 0.816970 0.408485 0.912765i $$-0.366057\pi$$
0.408485 + 0.912765i $$0.366057\pi$$
$$864$$ 0 0
$$865$$ −12.0000 −0.408012
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ −48.0000 −1.62642
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ −24.0000 −0.811348
$$876$$ 0 0
$$877$$ 32.0000 1.08056 0.540282 0.841484i $$-0.318318\pi$$
0.540282 + 0.841484i $$0.318318\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −2.00000 −0.0673817 −0.0336909 0.999432i $$-0.510726\pi$$
−0.0336909 + 0.999432i $$0.510726\pi$$
$$882$$ 0 0
$$883$$ −4.00000 −0.134611 −0.0673054 0.997732i $$-0.521440\pi$$
−0.0673054 + 0.997732i $$0.521440\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −48.0000 −1.61168 −0.805841 0.592132i $$-0.798286\pi$$
−0.805841 + 0.592132i $$0.798286\pi$$
$$888$$ 0 0
$$889$$ −4.00000 −0.134156
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −48.0000 −1.60626
$$894$$ 0 0
$$895$$ 8.00000 0.267411
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 12.0000 0.400222
$$900$$ 0 0
$$901$$ −12.0000 −0.399778
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 40.0000 1.32964
$$906$$ 0 0
$$907$$ −28.0000 −0.929725 −0.464862 0.885383i $$-0.653896\pi$$
−0.464862 + 0.885383i $$0.653896\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −48.0000 −1.59031 −0.795155 0.606406i $$-0.792611\pi$$
−0.795155 + 0.606406i $$0.792611\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −40.0000 −1.32092
$$918$$ 0 0
$$919$$ 30.0000 0.989609 0.494804 0.869004i $$-0.335240\pi$$
0.494804 + 0.869004i $$0.335240\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −48.0000 −1.57994
$$924$$ 0 0
$$925$$ −8.00000 −0.263038
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 50.0000 1.64045 0.820223 0.572043i $$-0.193849\pi$$
0.820223 + 0.572043i $$0.193849\pi$$
$$930$$ 0 0
$$931$$ −12.0000 −0.393284
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −38.0000 −1.24141 −0.620703 0.784046i $$-0.713153\pi$$
−0.620703 + 0.784046i $$0.713153\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 30.0000 0.977972 0.488986 0.872292i $$-0.337367\pi$$
0.488986 + 0.872292i $$0.337367\pi$$
$$942$$ 0 0
$$943$$ −8.00000 −0.260516
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 12.0000 0.389948 0.194974 0.980808i $$-0.437538\pi$$
0.194974 + 0.980808i $$0.437538\pi$$
$$948$$ 0 0
$$949$$ 24.0000 0.779073
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −6.00000 −0.194359 −0.0971795 0.995267i $$-0.530982\pi$$
−0.0971795 + 0.995267i $$0.530982\pi$$
$$954$$ 0 0
$$955$$ 16.0000 0.517748
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −36.0000 −1.16250
$$960$$ 0 0
$$961$$ −27.0000 −0.870968
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 12.0000 0.386294
$$966$$ 0 0
$$967$$ −22.0000 −0.707472 −0.353736 0.935345i $$-0.615089\pi$$
−0.353736 + 0.935345i $$0.615089\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$972$$ 0 0
$$973$$ 8.00000 0.256468
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 2.00000 0.0639857 0.0319928 0.999488i $$-0.489815\pi$$
0.0319928 + 0.999488i $$0.489815\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 16.0000 0.510321 0.255160 0.966899i $$-0.417872\pi$$
0.255160 + 0.966899i $$0.417872\pi$$
$$984$$ 0 0
$$985$$ −4.00000 −0.127451
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −16.0000 −0.508770
$$990$$ 0 0
$$991$$ −2.00000 −0.0635321 −0.0317660 0.999495i $$-0.510113\pi$$
−0.0317660 + 0.999495i $$0.510113\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −20.0000 −0.634043
$$996$$ 0 0
$$997$$ 48.0000 1.52018 0.760088 0.649821i $$-0.225156\pi$$
0.760088 + 0.649821i $$0.225156\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2304.2.a.b.1.1 1
3.2 odd 2 768.2.a.d.1.1 1
4.3 odd 2 2304.2.a.e.1.1 1
8.3 odd 2 2304.2.a.o.1.1 1
8.5 even 2 2304.2.a.l.1.1 1
12.11 even 2 768.2.a.h.1.1 1
16.3 odd 4 72.2.d.b.37.1 2
16.5 even 4 288.2.d.b.145.1 2
16.11 odd 4 72.2.d.b.37.2 2
16.13 even 4 288.2.d.b.145.2 2
24.5 odd 2 768.2.a.e.1.1 1
24.11 even 2 768.2.a.a.1.1 1
48.5 odd 4 96.2.d.a.49.2 2
48.11 even 4 24.2.d.a.13.1 2
48.29 odd 4 96.2.d.a.49.1 2
48.35 even 4 24.2.d.a.13.2 yes 2
80.3 even 4 1800.2.d.b.1549.1 2
80.13 odd 4 7200.2.d.d.2449.1 2
80.19 odd 4 1800.2.k.a.901.2 2
80.27 even 4 1800.2.d.b.1549.2 2
80.29 even 4 7200.2.k.d.3601.1 2
80.37 odd 4 7200.2.d.d.2449.2 2
80.43 even 4 1800.2.d.i.1549.1 2
80.53 odd 4 7200.2.d.g.2449.1 2
80.59 odd 4 1800.2.k.a.901.1 2
80.67 even 4 1800.2.d.i.1549.2 2
80.69 even 4 7200.2.k.d.3601.2 2
80.77 odd 4 7200.2.d.g.2449.2 2
144.5 odd 12 2592.2.r.f.2161.2 4
144.11 even 12 648.2.n.k.109.1 4
144.13 even 12 2592.2.r.g.2161.2 4
144.29 odd 12 2592.2.r.f.433.2 4
144.43 odd 12 648.2.n.c.109.2 4
144.59 even 12 648.2.n.k.541.2 4
144.61 even 12 2592.2.r.g.433.1 4
144.67 odd 12 648.2.n.c.541.2 4
144.77 odd 12 2592.2.r.f.2161.1 4
144.83 even 12 648.2.n.k.109.2 4
144.85 even 12 2592.2.r.g.2161.1 4
144.101 odd 12 2592.2.r.f.433.1 4
144.115 odd 12 648.2.n.c.109.1 4
144.131 even 12 648.2.n.k.541.1 4
144.133 even 12 2592.2.r.g.433.2 4
144.139 odd 12 648.2.n.c.541.1 4
240.29 odd 4 2400.2.k.a.1201.2 2
240.53 even 4 2400.2.d.b.49.1 2
240.59 even 4 600.2.k.b.301.2 2
240.77 even 4 2400.2.d.b.49.2 2
240.83 odd 4 600.2.d.c.349.2 2
240.107 odd 4 600.2.d.c.349.1 2
240.149 odd 4 2400.2.k.a.1201.1 2
240.173 even 4 2400.2.d.c.49.1 2
240.179 even 4 600.2.k.b.301.1 2
240.197 even 4 2400.2.d.c.49.2 2
240.203 odd 4 600.2.d.b.349.2 2
240.227 odd 4 600.2.d.b.349.1 2
336.83 odd 4 1176.2.c.a.589.2 2
336.125 even 4 4704.2.c.a.2353.2 2
336.251 odd 4 1176.2.c.a.589.1 2
336.293 even 4 4704.2.c.a.2353.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
24.2.d.a.13.1 2 48.11 even 4
24.2.d.a.13.2 yes 2 48.35 even 4
72.2.d.b.37.1 2 16.3 odd 4
72.2.d.b.37.2 2 16.11 odd 4
96.2.d.a.49.1 2 48.29 odd 4
96.2.d.a.49.2 2 48.5 odd 4
288.2.d.b.145.1 2 16.5 even 4
288.2.d.b.145.2 2 16.13 even 4
600.2.d.b.349.1 2 240.227 odd 4
600.2.d.b.349.2 2 240.203 odd 4
600.2.d.c.349.1 2 240.107 odd 4
600.2.d.c.349.2 2 240.83 odd 4
600.2.k.b.301.1 2 240.179 even 4
600.2.k.b.301.2 2 240.59 even 4
648.2.n.c.109.1 4 144.115 odd 12
648.2.n.c.109.2 4 144.43 odd 12
648.2.n.c.541.1 4 144.139 odd 12
648.2.n.c.541.2 4 144.67 odd 12
648.2.n.k.109.1 4 144.11 even 12
648.2.n.k.109.2 4 144.83 even 12
648.2.n.k.541.1 4 144.131 even 12
648.2.n.k.541.2 4 144.59 even 12
768.2.a.a.1.1 1 24.11 even 2
768.2.a.d.1.1 1 3.2 odd 2
768.2.a.e.1.1 1 24.5 odd 2
768.2.a.h.1.1 1 12.11 even 2
1176.2.c.a.589.1 2 336.251 odd 4
1176.2.c.a.589.2 2 336.83 odd 4
1800.2.d.b.1549.1 2 80.3 even 4
1800.2.d.b.1549.2 2 80.27 even 4
1800.2.d.i.1549.1 2 80.43 even 4
1800.2.d.i.1549.2 2 80.67 even 4
1800.2.k.a.901.1 2 80.59 odd 4
1800.2.k.a.901.2 2 80.19 odd 4
2304.2.a.b.1.1 1 1.1 even 1 trivial
2304.2.a.e.1.1 1 4.3 odd 2
2304.2.a.l.1.1 1 8.5 even 2
2304.2.a.o.1.1 1 8.3 odd 2
2400.2.d.b.49.1 2 240.53 even 4
2400.2.d.b.49.2 2 240.77 even 4
2400.2.d.c.49.1 2 240.173 even 4
2400.2.d.c.49.2 2 240.197 even 4
2400.2.k.a.1201.1 2 240.149 odd 4
2400.2.k.a.1201.2 2 240.29 odd 4
2592.2.r.f.433.1 4 144.101 odd 12
2592.2.r.f.433.2 4 144.29 odd 12
2592.2.r.f.2161.1 4 144.77 odd 12
2592.2.r.f.2161.2 4 144.5 odd 12
2592.2.r.g.433.1 4 144.61 even 12
2592.2.r.g.433.2 4 144.133 even 12
2592.2.r.g.2161.1 4 144.85 even 12
2592.2.r.g.2161.2 4 144.13 even 12
4704.2.c.a.2353.1 2 336.293 even 4
4704.2.c.a.2353.2 2 336.125 even 4
7200.2.d.d.2449.1 2 80.13 odd 4
7200.2.d.d.2449.2 2 80.37 odd 4
7200.2.d.g.2449.1 2 80.53 odd 4
7200.2.d.g.2449.2 2 80.77 odd 4
7200.2.k.d.3601.1 2 80.29 even 4
7200.2.k.d.3601.2 2 80.69 even 4