Properties

Label 2304.1.q.c
Level $2304$
Weight $1$
Character orbit 2304.q
Analytic conductor $1.150$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2304.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1152)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.20155392.5

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{5} q^{3} -\zeta_{12}^{4} q^{9} +O(q^{10})\) \( q + \zeta_{12}^{5} q^{3} -\zeta_{12}^{4} q^{9} -\zeta_{12}^{5} q^{11} + ( -\zeta_{12}^{2} - \zeta_{12}^{4} ) q^{17} + ( -\zeta_{12} + \zeta_{12}^{5} ) q^{19} -\zeta_{12}^{2} q^{25} + \zeta_{12}^{3} q^{27} + \zeta_{12}^{4} q^{33} + ( 1 + \zeta_{12}^{2} ) q^{41} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{43} -\zeta_{12}^{4} q^{49} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{51} + ( 1 - \zeta_{12}^{4} ) q^{57} + \zeta_{12} q^{59} + ( -\zeta_{12}^{3} - \zeta_{12}^{5} ) q^{67} - q^{73} + \zeta_{12} q^{75} -\zeta_{12}^{2} q^{81} -2 \zeta_{12}^{5} q^{83} + \zeta_{12}^{2} q^{97} -\zeta_{12}^{3} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{9} + O(q^{10}) \) \( 4 q + 2 q^{9} - 2 q^{25} - 2 q^{33} + 6 q^{41} + 2 q^{49} + 6 q^{57} - 4 q^{73} - 2 q^{81} + 2 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(1\) \(-\zeta_{12}^{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
257.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 −0.866025 + 0.500000i 0 0 0 0 0 0.500000 0.866025i 0
257.2 0 0.866025 0.500000i 0 0 0 0 0 0.500000 0.866025i 0
1793.1 0 −0.866025 0.500000i 0 0 0 0 0 0.500000 + 0.866025i 0
1793.2 0 0.866025 + 0.500000i 0 0 0 0 0 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
4.b odd 2 1 inner
8.b even 2 1 inner
9.d odd 6 1 inner
36.h even 6 1 inner
72.j odd 6 1 inner
72.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.1.q.c 4
4.b odd 2 1 inner 2304.1.q.c 4
8.b even 2 1 inner 2304.1.q.c 4
8.d odd 2 1 CM 2304.1.q.c 4
9.d odd 6 1 inner 2304.1.q.c 4
16.e even 4 1 1152.1.n.a 2
16.e even 4 1 1152.1.n.b yes 2
16.f odd 4 1 1152.1.n.a 2
16.f odd 4 1 1152.1.n.b yes 2
36.h even 6 1 inner 2304.1.q.c 4
48.i odd 4 1 3456.1.n.a 2
48.i odd 4 1 3456.1.n.b 2
48.k even 4 1 3456.1.n.a 2
48.k even 4 1 3456.1.n.b 2
72.j odd 6 1 inner 2304.1.q.c 4
72.l even 6 1 inner 2304.1.q.c 4
144.u even 12 1 1152.1.n.a 2
144.u even 12 1 1152.1.n.b yes 2
144.v odd 12 1 3456.1.n.a 2
144.v odd 12 1 3456.1.n.b 2
144.w odd 12 1 1152.1.n.a 2
144.w odd 12 1 1152.1.n.b yes 2
144.x even 12 1 3456.1.n.a 2
144.x even 12 1 3456.1.n.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.1.n.a 2 16.e even 4 1
1152.1.n.a 2 16.f odd 4 1
1152.1.n.a 2 144.u even 12 1
1152.1.n.a 2 144.w odd 12 1
1152.1.n.b yes 2 16.e even 4 1
1152.1.n.b yes 2 16.f odd 4 1
1152.1.n.b yes 2 144.u even 12 1
1152.1.n.b yes 2 144.w odd 12 1
2304.1.q.c 4 1.a even 1 1 trivial
2304.1.q.c 4 4.b odd 2 1 inner
2304.1.q.c 4 8.b even 2 1 inner
2304.1.q.c 4 8.d odd 2 1 CM
2304.1.q.c 4 9.d odd 6 1 inner
2304.1.q.c 4 36.h even 6 1 inner
2304.1.q.c 4 72.j odd 6 1 inner
2304.1.q.c 4 72.l even 6 1 inner
3456.1.n.a 2 48.i odd 4 1
3456.1.n.a 2 48.k even 4 1
3456.1.n.a 2 144.v odd 12 1
3456.1.n.a 2 144.x even 12 1
3456.1.n.b 2 48.i odd 4 1
3456.1.n.b 2 48.k even 4 1
3456.1.n.b 2 144.v odd 12 1
3456.1.n.b 2 144.x even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} - T_{11}^{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2304, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 1 - T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( T^{4} \)
$11$ \( 1 - T^{2} + T^{4} \)
$13$ \( T^{4} \)
$17$ \( ( 3 + T^{2} )^{2} \)
$19$ \( ( -3 + T^{2} )^{2} \)
$23$ \( T^{4} \)
$29$ \( T^{4} \)
$31$ \( T^{4} \)
$37$ \( T^{4} \)
$41$ \( ( 3 - 3 T + T^{2} )^{2} \)
$43$ \( 9 + 3 T^{2} + T^{4} \)
$47$ \( T^{4} \)
$53$ \( T^{4} \)
$59$ \( 1 - T^{2} + T^{4} \)
$61$ \( T^{4} \)
$67$ \( 9 + 3 T^{2} + T^{4} \)
$71$ \( T^{4} \)
$73$ \( ( 1 + T )^{4} \)
$79$ \( T^{4} \)
$83$ \( 16 - 4 T^{2} + T^{4} \)
$89$ \( T^{4} \)
$97$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less