Properties

Label 2303.1.f.b
Level $2303$
Weight $1$
Character orbit 2303.f
Analytic conductor $1.149$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(422,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.422");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 47)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.2209.1
Artin image: $C_3\times D_{10}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{30} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} - \beta_{2} - \beta_1) q^{3} + (\beta_{2} + \beta_1) q^{4} + q^{6} - q^{8} + ( - \beta_{3} + \beta_1 - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{3} - \beta_{2} - \beta_1) q^{3} + (\beta_{2} + \beta_1) q^{4} + q^{6} - q^{8} + ( - \beta_{3} + \beta_1 - 1) q^{9} + (\beta_{3} + 1) q^{12} + (\beta_{3} - \beta_{2} - \beta_1) q^{17} + \beta_{3} q^{18} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{24} + \beta_{3} q^{25} + q^{27} + \beta_{3} q^{32} + q^{34} - q^{36} + (\beta_{3} - \beta_1 + 1) q^{37} + (\beta_{3} + 1) q^{47} + \beta_{2} q^{50} + ( - 2 \beta_{3} + \beta_1 - 2) q^{51} + ( - \beta_{2} - \beta_1) q^{53} + \beta_1 q^{54} + (\beta_{2} + \beta_1) q^{59} - \beta_1 q^{61} + \beta_{2} q^{64} + (\beta_{3} + 1) q^{68} + ( - \beta_{2} - 1) q^{71} + (\beta_{3} - \beta_1 + 1) q^{72} - \beta_{3} q^{74} + ( - \beta_{3} + \beta_1 - 1) q^{75} + (\beta_{3} - \beta_1 + 1) q^{79} - 2 q^{83} - \beta_1 q^{89} + (\beta_{2} + \beta_1) q^{94} + ( - \beta_{3} + \beta_1 - 1) q^{96} - \beta_{2} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{3} - q^{4} + 4 q^{6} - 4 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} - q^{3} - q^{4} + 4 q^{6} - 4 q^{8} - q^{9} + 2 q^{12} - q^{17} - 2 q^{18} + q^{24} - 2 q^{25} + 4 q^{27} - 2 q^{32} + 4 q^{34} - 4 q^{36} + q^{37} + 2 q^{47} - 2 q^{50} - 3 q^{51} + q^{53} + q^{54} - q^{59} - q^{61} - 2 q^{64} + 2 q^{68} - 2 q^{71} + q^{72} + 2 q^{74} - q^{75} + q^{79} - 8 q^{83} - q^{89} - q^{94} - q^{96} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 2x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu^{2} - 2\nu - 1 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} - 1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(-1 - \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
422.1
−0.309017 + 0.535233i
0.809017 1.40126i
−0.309017 0.535233i
0.809017 + 1.40126i
−0.309017 + 0.535233i −0.809017 1.40126i 0.309017 + 0.535233i 0 1.00000 0 −1.00000 −0.809017 + 1.40126i 0
422.2 0.809017 1.40126i 0.309017 + 0.535233i −0.809017 1.40126i 0 1.00000 0 −1.00000 0.309017 0.535233i 0
704.1 −0.309017 0.535233i −0.809017 + 1.40126i 0.309017 0.535233i 0 1.00000 0 −1.00000 −0.809017 1.40126i 0
704.2 0.809017 + 1.40126i 0.309017 0.535233i −0.809017 + 1.40126i 0 1.00000 0 −1.00000 0.309017 + 0.535233i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
47.b odd 2 1 CM by \(\Q(\sqrt{-47}) \)
7.c even 3 1 inner
329.f odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2303.1.f.b 4
7.b odd 2 1 2303.1.f.c 4
7.c even 3 1 2303.1.d.c 2
7.c even 3 1 inner 2303.1.f.b 4
7.d odd 6 1 47.1.b.a 2
7.d odd 6 1 2303.1.f.c 4
21.g even 6 1 423.1.d.a 2
28.f even 6 1 752.1.g.a 2
35.i odd 6 1 1175.1.d.c 2
35.k even 12 2 1175.1.b.b 4
47.b odd 2 1 CM 2303.1.f.b 4
56.j odd 6 1 3008.1.g.b 2
56.m even 6 1 3008.1.g.a 2
63.i even 6 1 3807.1.f.a 4
63.k odd 6 1 3807.1.f.b 4
63.s even 6 1 3807.1.f.a 4
63.t odd 6 1 3807.1.f.b 4
329.c even 2 1 2303.1.f.c 4
329.f odd 6 1 2303.1.d.c 2
329.f odd 6 1 inner 2303.1.f.b 4
329.g even 6 1 47.1.b.a 2
329.g even 6 1 2303.1.f.c 4
329.n odd 138 22 2209.1.d.a 44
329.o even 138 22 2209.1.d.a 44
987.o odd 6 1 423.1.d.a 2
1316.j odd 6 1 752.1.g.a 2
1645.r even 6 1 1175.1.d.c 2
1645.v odd 12 2 1175.1.b.b 4
2632.v even 6 1 3008.1.g.b 2
2632.bf odd 6 1 3008.1.g.a 2
2961.o odd 6 1 3807.1.f.a 4
2961.y even 6 1 3807.1.f.b 4
2961.ba odd 6 1 3807.1.f.a 4
2961.bl even 6 1 3807.1.f.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
47.1.b.a 2 7.d odd 6 1
47.1.b.a 2 329.g even 6 1
423.1.d.a 2 21.g even 6 1
423.1.d.a 2 987.o odd 6 1
752.1.g.a 2 28.f even 6 1
752.1.g.a 2 1316.j odd 6 1
1175.1.b.b 4 35.k even 12 2
1175.1.b.b 4 1645.v odd 12 2
1175.1.d.c 2 35.i odd 6 1
1175.1.d.c 2 1645.r even 6 1
2209.1.d.a 44 329.n odd 138 22
2209.1.d.a 44 329.o even 138 22
2303.1.d.c 2 7.c even 3 1
2303.1.d.c 2 329.f odd 6 1
2303.1.f.b 4 1.a even 1 1 trivial
2303.1.f.b 4 7.c even 3 1 inner
2303.1.f.b 4 47.b odd 2 1 CM
2303.1.f.b 4 329.f odd 6 1 inner
2303.1.f.c 4 7.b odd 2 1
2303.1.f.c 4 7.d odd 6 1
2303.1.f.c 4 329.c even 2 1
2303.1.f.c 4 329.g even 6 1
3008.1.g.a 2 56.m even 6 1
3008.1.g.a 2 2632.bf odd 6 1
3008.1.g.b 2 56.j odd 6 1
3008.1.g.b 2 2632.v even 6 1
3807.1.f.a 4 63.i even 6 1
3807.1.f.a 4 63.s even 6 1
3807.1.f.a 4 2961.o odd 6 1
3807.1.f.a 4 2961.ba odd 6 1
3807.1.f.b 4 63.k odd 6 1
3807.1.f.b 4 63.t odd 6 1
3807.1.f.b 4 2961.y even 6 1
3807.1.f.b 4 2961.bl even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2303, [\chi])\):

\( T_{2}^{4} - T_{2}^{3} + 2T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} + T_{3}^{3} + 2T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} + T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} + T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} - T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( (T + 2)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
show more
show less