Properties

Label 2300.4.c.d.1749.6
Level $2300$
Weight $4$
Character 2300.1749
Analytic conductor $135.704$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,4,Mod(1749,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.1749"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,-60,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(135.704393013\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 164x^{8} + 9308x^{6} + 204385x^{4} + 1216296x^{2} + 1089936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 460)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1749.6
Root \(1.04116i\) of defining polynomial
Character \(\chi\) \(=\) 2300.1749
Dual form 2300.4.c.d.1749.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.04116i q^{3} +21.6113i q^{7} +22.8337 q^{9} -30.3495 q^{11} -69.6786i q^{13} -43.4506i q^{17} -14.3892 q^{19} -44.1120 q^{21} +23.0000i q^{23} +101.718i q^{27} +158.105 q^{29} -46.4782 q^{31} -61.9480i q^{33} +39.6849i q^{37} +142.225 q^{39} -201.771 q^{41} -17.8927i q^{43} -0.702668i q^{47} -124.048 q^{49} +88.6894 q^{51} +661.161i q^{53} -29.3705i q^{57} +732.679 q^{59} -875.997 q^{61} +493.465i q^{63} +746.803i q^{67} -46.9466 q^{69} -275.246 q^{71} +499.633i q^{73} -655.892i q^{77} +797.970 q^{79} +408.887 q^{81} +1150.10i q^{83} +322.716i q^{87} -1166.89 q^{89} +1505.85 q^{91} -94.8693i q^{93} +403.209i q^{97} -692.991 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 60 q^{9} + 14 q^{11} + 26 q^{19} + 506 q^{29} - 196 q^{31} + 820 q^{39} - 1548 q^{41} + 1366 q^{49} - 1314 q^{51} + 1526 q^{59} + 674 q^{61} - 138 q^{69} - 3008 q^{71} - 1252 q^{79} - 1918 q^{81}+ \cdots - 222 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.04116i 0.392821i 0.980522 + 0.196410i \(0.0629284\pi\)
−0.980522 + 0.196410i \(0.937072\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 21.6113i 1.16690i 0.812149 + 0.583450i \(0.198298\pi\)
−0.812149 + 0.583450i \(0.801702\pi\)
\(8\) 0 0
\(9\) 22.8337 0.845692
\(10\) 0 0
\(11\) −30.3495 −0.831884 −0.415942 0.909391i \(-0.636548\pi\)
−0.415942 + 0.909391i \(0.636548\pi\)
\(12\) 0 0
\(13\) − 69.6786i − 1.48657i −0.668976 0.743284i \(-0.733267\pi\)
0.668976 0.743284i \(-0.266733\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 43.4506i − 0.619901i −0.950753 0.309950i \(-0.899688\pi\)
0.950753 0.309950i \(-0.100312\pi\)
\(18\) 0 0
\(19\) −14.3892 −0.173742 −0.0868710 0.996220i \(-0.527687\pi\)
−0.0868710 + 0.996220i \(0.527687\pi\)
\(20\) 0 0
\(21\) −44.1120 −0.458382
\(22\) 0 0
\(23\) 23.0000i 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 101.718i 0.725026i
\(28\) 0 0
\(29\) 158.105 1.01239 0.506195 0.862419i \(-0.331052\pi\)
0.506195 + 0.862419i \(0.331052\pi\)
\(30\) 0 0
\(31\) −46.4782 −0.269282 −0.134641 0.990894i \(-0.542988\pi\)
−0.134641 + 0.990894i \(0.542988\pi\)
\(32\) 0 0
\(33\) − 61.9480i − 0.326781i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 39.6849i 0.176328i 0.996106 + 0.0881642i \(0.0281000\pi\)
−0.996106 + 0.0881642i \(0.971900\pi\)
\(38\) 0 0
\(39\) 142.225 0.583954
\(40\) 0 0
\(41\) −201.771 −0.768571 −0.384285 0.923214i \(-0.625552\pi\)
−0.384285 + 0.923214i \(0.625552\pi\)
\(42\) 0 0
\(43\) − 17.8927i − 0.0634562i −0.999497 0.0317281i \(-0.989899\pi\)
0.999497 0.0317281i \(-0.0101011\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 0.702668i − 0.00218074i −0.999999 0.00109037i \(-0.999653\pi\)
0.999999 0.00109037i \(-0.000347075\pi\)
\(48\) 0 0
\(49\) −124.048 −0.361655
\(50\) 0 0
\(51\) 88.6894 0.243510
\(52\) 0 0
\(53\) 661.161i 1.71354i 0.515701 + 0.856769i \(0.327532\pi\)
−0.515701 + 0.856769i \(0.672468\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 29.3705i − 0.0682495i
\(58\) 0 0
\(59\) 732.679 1.61672 0.808361 0.588686i \(-0.200355\pi\)
0.808361 + 0.588686i \(0.200355\pi\)
\(60\) 0 0
\(61\) −875.997 −1.83869 −0.919344 0.393454i \(-0.871280\pi\)
−0.919344 + 0.393454i \(0.871280\pi\)
\(62\) 0 0
\(63\) 493.465i 0.986838i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 746.803i 1.36174i 0.732404 + 0.680870i \(0.238398\pi\)
−0.732404 + 0.680870i \(0.761602\pi\)
\(68\) 0 0
\(69\) −46.9466 −0.0819087
\(70\) 0 0
\(71\) −275.246 −0.460079 −0.230040 0.973181i \(-0.573886\pi\)
−0.230040 + 0.973181i \(0.573886\pi\)
\(72\) 0 0
\(73\) 499.633i 0.801063i 0.916283 + 0.400532i \(0.131175\pi\)
−0.916283 + 0.400532i \(0.868825\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 655.892i − 0.970725i
\(78\) 0 0
\(79\) 797.970 1.13644 0.568219 0.822877i \(-0.307633\pi\)
0.568219 + 0.822877i \(0.307633\pi\)
\(80\) 0 0
\(81\) 408.887 0.560887
\(82\) 0 0
\(83\) 1150.10i 1.52097i 0.649358 + 0.760483i \(0.275038\pi\)
−0.649358 + 0.760483i \(0.724962\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 322.716i 0.397687i
\(88\) 0 0
\(89\) −1166.89 −1.38978 −0.694890 0.719116i \(-0.744547\pi\)
−0.694890 + 0.719116i \(0.744547\pi\)
\(90\) 0 0
\(91\) 1505.85 1.73468
\(92\) 0 0
\(93\) − 94.8693i − 0.105779i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 403.209i 0.422058i 0.977480 + 0.211029i \(0.0676815\pi\)
−0.977480 + 0.211029i \(0.932318\pi\)
\(98\) 0 0
\(99\) −692.991 −0.703517
\(100\) 0 0
\(101\) 484.319 0.477144 0.238572 0.971125i \(-0.423321\pi\)
0.238572 + 0.971125i \(0.423321\pi\)
\(102\) 0 0
\(103\) 2064.69i 1.97514i 0.157167 + 0.987572i \(0.449764\pi\)
−0.157167 + 0.987572i \(0.550236\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1436.43i − 1.29780i −0.760872 0.648902i \(-0.775228\pi\)
0.760872 0.648902i \(-0.224772\pi\)
\(108\) 0 0
\(109\) −1870.62 −1.64379 −0.821895 0.569639i \(-0.807083\pi\)
−0.821895 + 0.569639i \(0.807083\pi\)
\(110\) 0 0
\(111\) −81.0030 −0.0692654
\(112\) 0 0
\(113\) − 1606.67i − 1.33755i −0.743465 0.668775i \(-0.766819\pi\)
0.743465 0.668775i \(-0.233181\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 1591.02i − 1.25718i
\(118\) 0 0
\(119\) 939.023 0.723362
\(120\) 0 0
\(121\) −409.908 −0.307970
\(122\) 0 0
\(123\) − 411.847i − 0.301910i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 2031.66i − 1.41953i −0.704438 0.709766i \(-0.748801\pi\)
0.704438 0.709766i \(-0.251199\pi\)
\(128\) 0 0
\(129\) 36.5219 0.0249269
\(130\) 0 0
\(131\) −434.691 −0.289917 −0.144958 0.989438i \(-0.546305\pi\)
−0.144958 + 0.989438i \(0.546305\pi\)
\(132\) 0 0
\(133\) − 310.968i − 0.202740i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 939.729i 0.586033i 0.956107 + 0.293016i \(0.0946590\pi\)
−0.956107 + 0.293016i \(0.905341\pi\)
\(138\) 0 0
\(139\) 124.609 0.0760376 0.0380188 0.999277i \(-0.487895\pi\)
0.0380188 + 0.999277i \(0.487895\pi\)
\(140\) 0 0
\(141\) 1.43426 0.000856639 0
\(142\) 0 0
\(143\) 2114.71i 1.23665i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 253.201i − 0.142066i
\(148\) 0 0
\(149\) −1375.14 −0.756079 −0.378039 0.925789i \(-0.623402\pi\)
−0.378039 + 0.925789i \(0.623402\pi\)
\(150\) 0 0
\(151\) −1196.51 −0.644838 −0.322419 0.946597i \(-0.604496\pi\)
−0.322419 + 0.946597i \(0.604496\pi\)
\(152\) 0 0
\(153\) − 992.137i − 0.524245i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 212.340i − 0.107940i −0.998543 0.0539699i \(-0.982812\pi\)
0.998543 0.0539699i \(-0.0171875\pi\)
\(158\) 0 0
\(159\) −1349.53 −0.673113
\(160\) 0 0
\(161\) −497.060 −0.243315
\(162\) 0 0
\(163\) − 1390.16i − 0.668013i −0.942571 0.334006i \(-0.891599\pi\)
0.942571 0.334006i \(-0.108401\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 362.349i 0.167901i 0.996470 + 0.0839503i \(0.0267537\pi\)
−0.996470 + 0.0839503i \(0.973246\pi\)
\(168\) 0 0
\(169\) −2658.11 −1.20988
\(170\) 0 0
\(171\) −328.557 −0.146932
\(172\) 0 0
\(173\) − 986.596i − 0.433581i −0.976218 0.216790i \(-0.930441\pi\)
0.976218 0.216790i \(-0.0695588\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1495.51i 0.635082i
\(178\) 0 0
\(179\) −3977.44 −1.66083 −0.830413 0.557149i \(-0.811895\pi\)
−0.830413 + 0.557149i \(0.811895\pi\)
\(180\) 0 0
\(181\) 2512.70 1.03186 0.515932 0.856630i \(-0.327446\pi\)
0.515932 + 0.856630i \(0.327446\pi\)
\(182\) 0 0
\(183\) − 1788.05i − 0.722275i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1318.70i 0.515685i
\(188\) 0 0
\(189\) −2198.26 −0.846032
\(190\) 0 0
\(191\) 1977.49 0.749142 0.374571 0.927198i \(-0.377790\pi\)
0.374571 + 0.927198i \(0.377790\pi\)
\(192\) 0 0
\(193\) 1241.30i 0.462957i 0.972840 + 0.231478i \(0.0743563\pi\)
−0.972840 + 0.231478i \(0.925644\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1969.91i 0.712436i 0.934403 + 0.356218i \(0.115934\pi\)
−0.934403 + 0.356218i \(0.884066\pi\)
\(198\) 0 0
\(199\) 4053.09 1.44380 0.721899 0.691998i \(-0.243269\pi\)
0.721899 + 0.691998i \(0.243269\pi\)
\(200\) 0 0
\(201\) −1524.34 −0.534919
\(202\) 0 0
\(203\) 3416.85i 1.18136i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 525.175i 0.176339i
\(208\) 0 0
\(209\) 436.704 0.144533
\(210\) 0 0
\(211\) 374.110 0.122061 0.0610303 0.998136i \(-0.480561\pi\)
0.0610303 + 0.998136i \(0.480561\pi\)
\(212\) 0 0
\(213\) − 561.819i − 0.180729i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1004.45i − 0.314225i
\(218\) 0 0
\(219\) −1019.83 −0.314674
\(220\) 0 0
\(221\) −3027.58 −0.921524
\(222\) 0 0
\(223\) − 3226.90i − 0.969010i −0.874788 0.484505i \(-0.839000\pi\)
0.874788 0.484505i \(-0.161000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3020.61i 0.883194i 0.897213 + 0.441597i \(0.145588\pi\)
−0.897213 + 0.441597i \(0.854412\pi\)
\(228\) 0 0
\(229\) −934.761 −0.269741 −0.134871 0.990863i \(-0.543062\pi\)
−0.134871 + 0.990863i \(0.543062\pi\)
\(230\) 0 0
\(231\) 1338.78 0.381321
\(232\) 0 0
\(233\) 3916.88i 1.10130i 0.834736 + 0.550651i \(0.185620\pi\)
−0.834736 + 0.550651i \(0.814380\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1628.78i 0.446416i
\(238\) 0 0
\(239\) −3200.06 −0.866086 −0.433043 0.901373i \(-0.642560\pi\)
−0.433043 + 0.901373i \(0.642560\pi\)
\(240\) 0 0
\(241\) −3774.24 −1.00880 −0.504399 0.863471i \(-0.668286\pi\)
−0.504399 + 0.863471i \(0.668286\pi\)
\(242\) 0 0
\(243\) 3581.00i 0.945354i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1002.62i 0.258279i
\(248\) 0 0
\(249\) −2347.54 −0.597467
\(250\) 0 0
\(251\) 3342.01 0.840420 0.420210 0.907427i \(-0.361956\pi\)
0.420210 + 0.907427i \(0.361956\pi\)
\(252\) 0 0
\(253\) − 698.039i − 0.173460i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 2899.20i − 0.703685i −0.936059 0.351842i \(-0.885555\pi\)
0.936059 0.351842i \(-0.114445\pi\)
\(258\) 0 0
\(259\) −857.641 −0.205758
\(260\) 0 0
\(261\) 3610.11 0.856170
\(262\) 0 0
\(263\) 6001.83i 1.40718i 0.710605 + 0.703591i \(0.248421\pi\)
−0.710605 + 0.703591i \(0.751579\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 2381.81i − 0.545934i
\(268\) 0 0
\(269\) −8308.29 −1.88314 −0.941571 0.336813i \(-0.890651\pi\)
−0.941571 + 0.336813i \(0.890651\pi\)
\(270\) 0 0
\(271\) −2395.28 −0.536911 −0.268456 0.963292i \(-0.586513\pi\)
−0.268456 + 0.963292i \(0.586513\pi\)
\(272\) 0 0
\(273\) 3073.66i 0.681416i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7466.49i 1.61956i 0.586733 + 0.809780i \(0.300414\pi\)
−0.586733 + 0.809780i \(0.699586\pi\)
\(278\) 0 0
\(279\) −1061.27 −0.227729
\(280\) 0 0
\(281\) −5570.87 −1.18267 −0.591335 0.806426i \(-0.701399\pi\)
−0.591335 + 0.806426i \(0.701399\pi\)
\(282\) 0 0
\(283\) 5273.48i 1.10769i 0.832620 + 0.553845i \(0.186840\pi\)
−0.832620 + 0.553845i \(0.813160\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4360.54i − 0.896845i
\(288\) 0 0
\(289\) 3025.05 0.615723
\(290\) 0 0
\(291\) −823.012 −0.165793
\(292\) 0 0
\(293\) 511.514i 0.101990i 0.998699 + 0.0509948i \(0.0162392\pi\)
−0.998699 + 0.0509948i \(0.983761\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 3087.10i − 0.603137i
\(298\) 0 0
\(299\) 1602.61 0.309971
\(300\) 0 0
\(301\) 386.685 0.0740471
\(302\) 0 0
\(303\) 988.570i 0.187432i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4157.46i 0.772894i 0.922312 + 0.386447i \(0.126298\pi\)
−0.922312 + 0.386447i \(0.873702\pi\)
\(308\) 0 0
\(309\) −4214.35 −0.775877
\(310\) 0 0
\(311\) −3408.45 −0.621465 −0.310733 0.950497i \(-0.600574\pi\)
−0.310733 + 0.950497i \(0.600574\pi\)
\(312\) 0 0
\(313\) − 4516.35i − 0.815589i −0.913074 0.407794i \(-0.866298\pi\)
0.913074 0.407794i \(-0.133702\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2693.62i 0.477251i 0.971112 + 0.238626i \(0.0766969\pi\)
−0.971112 + 0.238626i \(0.923303\pi\)
\(318\) 0 0
\(319\) −4798.40 −0.842190
\(320\) 0 0
\(321\) 2931.98 0.509804
\(322\) 0 0
\(323\) 625.217i 0.107703i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 3818.23i − 0.645715i
\(328\) 0 0
\(329\) 15.1856 0.00254470
\(330\) 0 0
\(331\) −11024.4 −1.83068 −0.915338 0.402687i \(-0.868076\pi\)
−0.915338 + 0.402687i \(0.868076\pi\)
\(332\) 0 0
\(333\) 906.152i 0.149120i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5218.80i 0.843579i 0.906694 + 0.421790i \(0.138598\pi\)
−0.906694 + 0.421790i \(0.861402\pi\)
\(338\) 0 0
\(339\) 3279.47 0.525417
\(340\) 0 0
\(341\) 1410.59 0.224011
\(342\) 0 0
\(343\) 4731.84i 0.744885i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 93.8512i 0.0145193i 0.999974 + 0.00725965i \(0.00231084\pi\)
−0.999974 + 0.00725965i \(0.997689\pi\)
\(348\) 0 0
\(349\) −4540.27 −0.696376 −0.348188 0.937425i \(-0.613203\pi\)
−0.348188 + 0.937425i \(0.613203\pi\)
\(350\) 0 0
\(351\) 7087.59 1.07780
\(352\) 0 0
\(353\) − 4287.12i − 0.646403i −0.946330 0.323202i \(-0.895241\pi\)
0.946330 0.323202i \(-0.104759\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1916.69i 0.284151i
\(358\) 0 0
\(359\) 176.418 0.0259359 0.0129680 0.999916i \(-0.495872\pi\)
0.0129680 + 0.999916i \(0.495872\pi\)
\(360\) 0 0
\(361\) −6651.95 −0.969814
\(362\) 0 0
\(363\) − 836.686i − 0.120977i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7745.87i − 1.10172i −0.834598 0.550860i \(-0.814300\pi\)
0.834598 0.550860i \(-0.185700\pi\)
\(368\) 0 0
\(369\) −4607.18 −0.649974
\(370\) 0 0
\(371\) −14288.5 −1.99953
\(372\) 0 0
\(373\) 8268.02i 1.14773i 0.818951 + 0.573863i \(0.194556\pi\)
−0.818951 + 0.573863i \(0.805444\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 11016.5i − 1.50499i
\(378\) 0 0
\(379\) −7229.18 −0.979783 −0.489892 0.871783i \(-0.662964\pi\)
−0.489892 + 0.871783i \(0.662964\pi\)
\(380\) 0 0
\(381\) 4146.93 0.557621
\(382\) 0 0
\(383\) 519.390i 0.0692940i 0.999400 + 0.0346470i \(0.0110307\pi\)
−0.999400 + 0.0346470i \(0.988969\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 408.557i − 0.0536644i
\(388\) 0 0
\(389\) 10746.4 1.40068 0.700341 0.713809i \(-0.253031\pi\)
0.700341 + 0.713809i \(0.253031\pi\)
\(390\) 0 0
\(391\) 999.363 0.129258
\(392\) 0 0
\(393\) − 887.271i − 0.113885i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 11738.8i − 1.48401i −0.670395 0.742004i \(-0.733875\pi\)
0.670395 0.742004i \(-0.266125\pi\)
\(398\) 0 0
\(399\) 634.734 0.0796403
\(400\) 0 0
\(401\) −94.4786 −0.0117657 −0.00588284 0.999983i \(-0.501873\pi\)
−0.00588284 + 0.999983i \(0.501873\pi\)
\(402\) 0 0
\(403\) 3238.54i 0.400306i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1204.42i − 0.146685i
\(408\) 0 0
\(409\) 13712.5 1.65780 0.828901 0.559396i \(-0.188967\pi\)
0.828901 + 0.559396i \(0.188967\pi\)
\(410\) 0 0
\(411\) −1918.13 −0.230206
\(412\) 0 0
\(413\) 15834.1i 1.88655i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 254.347i 0.0298691i
\(418\) 0 0
\(419\) −4392.60 −0.512154 −0.256077 0.966656i \(-0.582430\pi\)
−0.256077 + 0.966656i \(0.582430\pi\)
\(420\) 0 0
\(421\) 112.287 0.0129989 0.00649943 0.999979i \(-0.497931\pi\)
0.00649943 + 0.999979i \(0.497931\pi\)
\(422\) 0 0
\(423\) − 16.0445i − 0.00184423i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 18931.4i − 2.14556i
\(428\) 0 0
\(429\) −4316.46 −0.485782
\(430\) 0 0
\(431\) −7035.30 −0.786261 −0.393131 0.919483i \(-0.628608\pi\)
−0.393131 + 0.919483i \(0.628608\pi\)
\(432\) 0 0
\(433\) − 12046.0i − 1.33693i −0.743742 0.668467i \(-0.766951\pi\)
0.743742 0.668467i \(-0.233049\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 330.951i − 0.0362277i
\(438\) 0 0
\(439\) 2089.02 0.227115 0.113557 0.993531i \(-0.463775\pi\)
0.113557 + 0.993531i \(0.463775\pi\)
\(440\) 0 0
\(441\) −2832.47 −0.305849
\(442\) 0 0
\(443\) 7436.42i 0.797551i 0.917049 + 0.398776i \(0.130565\pi\)
−0.917049 + 0.398776i \(0.869435\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 2806.87i − 0.297003i
\(448\) 0 0
\(449\) −1796.33 −0.188806 −0.0944032 0.995534i \(-0.530094\pi\)
−0.0944032 + 0.995534i \(0.530094\pi\)
\(450\) 0 0
\(451\) 6123.66 0.639361
\(452\) 0 0
\(453\) − 2442.26i − 0.253306i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 3232.73i − 0.330899i −0.986218 0.165450i \(-0.947093\pi\)
0.986218 0.165450i \(-0.0529075\pi\)
\(458\) 0 0
\(459\) 4419.72 0.449444
\(460\) 0 0
\(461\) −10750.2 −1.08609 −0.543044 0.839704i \(-0.682728\pi\)
−0.543044 + 0.839704i \(0.682728\pi\)
\(462\) 0 0
\(463\) − 6598.81i − 0.662360i −0.943568 0.331180i \(-0.892553\pi\)
0.943568 0.331180i \(-0.107447\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8153.38i 0.807909i 0.914779 + 0.403954i \(0.132365\pi\)
−0.914779 + 0.403954i \(0.867635\pi\)
\(468\) 0 0
\(469\) −16139.4 −1.58901
\(470\) 0 0
\(471\) 433.418 0.0424010
\(472\) 0 0
\(473\) 543.036i 0.0527882i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15096.8i 1.44913i
\(478\) 0 0
\(479\) −15056.7 −1.43624 −0.718120 0.695919i \(-0.754997\pi\)
−0.718120 + 0.695919i \(0.754997\pi\)
\(480\) 0 0
\(481\) 2765.19 0.262124
\(482\) 0 0
\(483\) − 1014.58i − 0.0955793i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2098.90i 0.195298i 0.995221 + 0.0976491i \(0.0311323\pi\)
−0.995221 + 0.0976491i \(0.968868\pi\)
\(488\) 0 0
\(489\) 2837.54 0.262409
\(490\) 0 0
\(491\) −2245.71 −0.206410 −0.103205 0.994660i \(-0.532910\pi\)
−0.103205 + 0.994660i \(0.532910\pi\)
\(492\) 0 0
\(493\) − 6869.74i − 0.627581i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 5948.41i − 0.536866i
\(498\) 0 0
\(499\) −3216.32 −0.288542 −0.144271 0.989538i \(-0.546084\pi\)
−0.144271 + 0.989538i \(0.546084\pi\)
\(500\) 0 0
\(501\) −739.611 −0.0659548
\(502\) 0 0
\(503\) 15459.5i 1.37039i 0.728361 + 0.685193i \(0.240282\pi\)
−0.728361 + 0.685193i \(0.759718\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 5425.62i − 0.475267i
\(508\) 0 0
\(509\) −12581.8 −1.09564 −0.547818 0.836597i \(-0.684541\pi\)
−0.547818 + 0.836597i \(0.684541\pi\)
\(510\) 0 0
\(511\) −10797.7 −0.934761
\(512\) 0 0
\(513\) − 1463.64i − 0.125967i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 21.3256i 0.00181412i
\(518\) 0 0
\(519\) 2013.80 0.170320
\(520\) 0 0
\(521\) 2681.76 0.225509 0.112754 0.993623i \(-0.464033\pi\)
0.112754 + 0.993623i \(0.464033\pi\)
\(522\) 0 0
\(523\) 9009.09i 0.753232i 0.926370 + 0.376616i \(0.122912\pi\)
−0.926370 + 0.376616i \(0.877088\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2019.50i 0.166928i
\(528\) 0 0
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 16729.8 1.36725
\(532\) 0 0
\(533\) 14059.2i 1.14253i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 8118.57i − 0.652406i
\(538\) 0 0
\(539\) 3764.78 0.300855
\(540\) 0 0
\(541\) 22789.6 1.81109 0.905546 0.424249i \(-0.139462\pi\)
0.905546 + 0.424249i \(0.139462\pi\)
\(542\) 0 0
\(543\) 5128.80i 0.405337i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20709.0i 1.61874i 0.587297 + 0.809371i \(0.300192\pi\)
−0.587297 + 0.809371i \(0.699808\pi\)
\(548\) 0 0
\(549\) −20002.3 −1.55496
\(550\) 0 0
\(551\) −2274.99 −0.175895
\(552\) 0 0
\(553\) 17245.2i 1.32611i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 586.443i 0.0446111i 0.999751 + 0.0223055i \(0.00710066\pi\)
−0.999751 + 0.0223055i \(0.992899\pi\)
\(558\) 0 0
\(559\) −1246.74 −0.0943320
\(560\) 0 0
\(561\) −2691.68 −0.202572
\(562\) 0 0
\(563\) 4988.10i 0.373399i 0.982417 + 0.186699i \(0.0597790\pi\)
−0.982417 + 0.186699i \(0.940221\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 8836.57i 0.654499i
\(568\) 0 0
\(569\) −5548.19 −0.408773 −0.204387 0.978890i \(-0.565520\pi\)
−0.204387 + 0.978890i \(0.565520\pi\)
\(570\) 0 0
\(571\) −2684.93 −0.196779 −0.0983893 0.995148i \(-0.531369\pi\)
−0.0983893 + 0.995148i \(0.531369\pi\)
\(572\) 0 0
\(573\) 4036.36i 0.294278i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1462.86i 0.105546i 0.998607 + 0.0527728i \(0.0168059\pi\)
−0.998607 + 0.0527728i \(0.983194\pi\)
\(578\) 0 0
\(579\) −2533.68 −0.181859
\(580\) 0 0
\(581\) −24855.2 −1.77481
\(582\) 0 0
\(583\) − 20065.9i − 1.42546i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 11020.7i − 0.774912i −0.921888 0.387456i \(-0.873354\pi\)
0.921888 0.387456i \(-0.126646\pi\)
\(588\) 0 0
\(589\) 668.782 0.0467856
\(590\) 0 0
\(591\) −4020.88 −0.279860
\(592\) 0 0
\(593\) − 7341.16i − 0.508373i −0.967155 0.254186i \(-0.918192\pi\)
0.967155 0.254186i \(-0.0818077\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8272.98i 0.567154i
\(598\) 0 0
\(599\) 12642.5 0.862366 0.431183 0.902264i \(-0.358096\pi\)
0.431183 + 0.902264i \(0.358096\pi\)
\(600\) 0 0
\(601\) 7426.60 0.504056 0.252028 0.967720i \(-0.418903\pi\)
0.252028 + 0.967720i \(0.418903\pi\)
\(602\) 0 0
\(603\) 17052.3i 1.15161i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 7506.30i − 0.501929i −0.967996 0.250965i \(-0.919252\pi\)
0.967996 0.250965i \(-0.0807478\pi\)
\(608\) 0 0
\(609\) −6974.31 −0.464061
\(610\) 0 0
\(611\) −48.9610 −0.00324182
\(612\) 0 0
\(613\) − 23467.7i − 1.54625i −0.634254 0.773124i \(-0.718693\pi\)
0.634254 0.773124i \(-0.281307\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1436.56i 0.0937337i 0.998901 + 0.0468669i \(0.0149236\pi\)
−0.998901 + 0.0468669i \(0.985076\pi\)
\(618\) 0 0
\(619\) −12664.4 −0.822332 −0.411166 0.911561i \(-0.634878\pi\)
−0.411166 + 0.911561i \(0.634878\pi\)
\(620\) 0 0
\(621\) −2339.52 −0.151178
\(622\) 0 0
\(623\) − 25218.1i − 1.62173i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 891.380i 0.0567756i
\(628\) 0 0
\(629\) 1724.33 0.109306
\(630\) 0 0
\(631\) 5383.68 0.339653 0.169826 0.985474i \(-0.445679\pi\)
0.169826 + 0.985474i \(0.445679\pi\)
\(632\) 0 0
\(633\) 763.616i 0.0479479i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8643.47i 0.537625i
\(638\) 0 0
\(639\) −6284.87 −0.389085
\(640\) 0 0
\(641\) 31245.1 1.92529 0.962643 0.270775i \(-0.0872799\pi\)
0.962643 + 0.270775i \(0.0872799\pi\)
\(642\) 0 0
\(643\) − 22381.8i − 1.37271i −0.727268 0.686354i \(-0.759210\pi\)
0.727268 0.686354i \(-0.240790\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13062.8i 0.793741i 0.917875 + 0.396870i \(0.129904\pi\)
−0.917875 + 0.396870i \(0.870096\pi\)
\(648\) 0 0
\(649\) −22236.4 −1.34493
\(650\) 0 0
\(651\) 2050.25 0.123434
\(652\) 0 0
\(653\) 17486.1i 1.04791i 0.851746 + 0.523955i \(0.175544\pi\)
−0.851746 + 0.523955i \(0.824456\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 11408.5i 0.677453i
\(658\) 0 0
\(659\) 29707.1 1.75603 0.878016 0.478631i \(-0.158867\pi\)
0.878016 + 0.478631i \(0.158867\pi\)
\(660\) 0 0
\(661\) −9905.74 −0.582888 −0.291444 0.956588i \(-0.594136\pi\)
−0.291444 + 0.956588i \(0.594136\pi\)
\(662\) 0 0
\(663\) − 6179.76i − 0.361994i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3636.41i 0.211098i
\(668\) 0 0
\(669\) 6586.61 0.380647
\(670\) 0 0
\(671\) 26586.1 1.52957
\(672\) 0 0
\(673\) 7803.48i 0.446957i 0.974709 + 0.223478i \(0.0717412\pi\)
−0.974709 + 0.223478i \(0.928259\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29359.1i 1.66671i 0.552740 + 0.833354i \(0.313582\pi\)
−0.552740 + 0.833354i \(0.686418\pi\)
\(678\) 0 0
\(679\) −8713.86 −0.492500
\(680\) 0 0
\(681\) −6165.54 −0.346937
\(682\) 0 0
\(683\) 26055.8i 1.45973i 0.683591 + 0.729866i \(0.260417\pi\)
−0.683591 + 0.729866i \(0.739583\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 1907.99i − 0.105960i
\(688\) 0 0
\(689\) 46068.8 2.54729
\(690\) 0 0
\(691\) 15166.4 0.834959 0.417480 0.908686i \(-0.362914\pi\)
0.417480 + 0.908686i \(0.362914\pi\)
\(692\) 0 0
\(693\) − 14976.4i − 0.820934i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 8767.08i 0.476437i
\(698\) 0 0
\(699\) −7994.95 −0.432614
\(700\) 0 0
\(701\) −26527.8 −1.42930 −0.714650 0.699482i \(-0.753414\pi\)
−0.714650 + 0.699482i \(0.753414\pi\)
\(702\) 0 0
\(703\) − 571.032i − 0.0306357i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10466.7i 0.556779i
\(708\) 0 0
\(709\) −21268.1 −1.12657 −0.563287 0.826261i \(-0.690464\pi\)
−0.563287 + 0.826261i \(0.690464\pi\)
\(710\) 0 0
\(711\) 18220.6 0.961077
\(712\) 0 0
\(713\) − 1069.00i − 0.0561491i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 6531.82i − 0.340216i
\(718\) 0 0
\(719\) 27640.4 1.43368 0.716838 0.697240i \(-0.245589\pi\)
0.716838 + 0.697240i \(0.245589\pi\)
\(720\) 0 0
\(721\) −44620.6 −2.30480
\(722\) 0 0
\(723\) − 7703.81i − 0.396276i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 10860.2i − 0.554036i −0.960865 0.277018i \(-0.910654\pi\)
0.960865 0.277018i \(-0.0893462\pi\)
\(728\) 0 0
\(729\) 3730.57 0.189533
\(730\) 0 0
\(731\) −777.450 −0.0393366
\(732\) 0 0
\(733\) 2575.74i 0.129791i 0.997892 + 0.0648956i \(0.0206715\pi\)
−0.997892 + 0.0648956i \(0.979329\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 22665.1i − 1.13281i
\(738\) 0 0
\(739\) 25649.2 1.27675 0.638377 0.769724i \(-0.279606\pi\)
0.638377 + 0.769724i \(0.279606\pi\)
\(740\) 0 0
\(741\) −2046.50 −0.101457
\(742\) 0 0
\(743\) − 3767.84i − 0.186041i −0.995664 0.0930207i \(-0.970348\pi\)
0.995664 0.0930207i \(-0.0296523\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 26261.1i 1.28627i
\(748\) 0 0
\(749\) 31043.1 1.51441
\(750\) 0 0
\(751\) 16030.6 0.778913 0.389456 0.921045i \(-0.372663\pi\)
0.389456 + 0.921045i \(0.372663\pi\)
\(752\) 0 0
\(753\) 6821.55i 0.330134i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 3408.80i − 0.163666i −0.996646 0.0818329i \(-0.973923\pi\)
0.996646 0.0818329i \(-0.0260774\pi\)
\(758\) 0 0
\(759\) 1424.81 0.0681385
\(760\) 0 0
\(761\) 28208.1 1.34368 0.671841 0.740696i \(-0.265504\pi\)
0.671841 + 0.740696i \(0.265504\pi\)
\(762\) 0 0
\(763\) − 40426.6i − 1.91814i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 51052.1i − 2.40337i
\(768\) 0 0
\(769\) −26349.3 −1.23560 −0.617802 0.786334i \(-0.711977\pi\)
−0.617802 + 0.786334i \(0.711977\pi\)
\(770\) 0 0
\(771\) 5917.71 0.276422
\(772\) 0 0
\(773\) − 29491.9i − 1.37225i −0.727482 0.686126i \(-0.759310\pi\)
0.727482 0.686126i \(-0.240690\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1750.58i − 0.0808258i
\(778\) 0 0
\(779\) 2903.32 0.133533
\(780\) 0 0
\(781\) 8353.56 0.382732
\(782\) 0 0
\(783\) 16082.1i 0.734009i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18485.5i 0.837276i 0.908153 + 0.418638i \(0.137492\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(788\) 0 0
\(789\) −12250.7 −0.552770
\(790\) 0 0
\(791\) 34722.3 1.56079
\(792\) 0 0
\(793\) 61038.3i 2.73333i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 36684.3i 1.63039i 0.579184 + 0.815197i \(0.303371\pi\)
−0.579184 + 0.815197i \(0.696629\pi\)
\(798\) 0 0
\(799\) −30.5313 −0.00135184
\(800\) 0 0
\(801\) −26644.5 −1.17533
\(802\) 0 0
\(803\) − 15163.6i − 0.666391i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 16958.5i − 0.739737i
\(808\) 0 0
\(809\) −216.567 −0.00941173 −0.00470586 0.999989i \(-0.501498\pi\)
−0.00470586 + 0.999989i \(0.501498\pi\)
\(810\) 0 0
\(811\) 25897.5 1.12131 0.560657 0.828048i \(-0.310549\pi\)
0.560657 + 0.828048i \(0.310549\pi\)
\(812\) 0 0
\(813\) − 4889.14i − 0.210910i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 257.462i 0.0110250i
\(818\) 0 0
\(819\) 34384.0 1.46700
\(820\) 0 0
\(821\) 12735.6 0.541384 0.270692 0.962666i \(-0.412748\pi\)
0.270692 + 0.962666i \(0.412748\pi\)
\(822\) 0 0
\(823\) − 25798.2i − 1.09267i −0.837566 0.546336i \(-0.816022\pi\)
0.837566 0.546336i \(-0.183978\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21295.2i 0.895413i 0.894181 + 0.447706i \(0.147759\pi\)
−0.894181 + 0.447706i \(0.852241\pi\)
\(828\) 0 0
\(829\) 43456.4 1.82063 0.910315 0.413915i \(-0.135839\pi\)
0.910315 + 0.413915i \(0.135839\pi\)
\(830\) 0 0
\(831\) −15240.3 −0.636197
\(832\) 0 0
\(833\) 5389.94i 0.224190i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 4727.68i − 0.195236i
\(838\) 0 0
\(839\) −14245.5 −0.586184 −0.293092 0.956084i \(-0.594684\pi\)
−0.293092 + 0.956084i \(0.594684\pi\)
\(840\) 0 0
\(841\) 608.090 0.0249330
\(842\) 0 0
\(843\) − 11371.0i − 0.464577i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 8858.64i − 0.359370i
\(848\) 0 0
\(849\) −10764.0 −0.435123
\(850\) 0 0
\(851\) −912.752 −0.0367670
\(852\) 0 0
\(853\) − 1967.69i − 0.0789830i −0.999220 0.0394915i \(-0.987426\pi\)
0.999220 0.0394915i \(-0.0125738\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 32176.3i − 1.28252i −0.767322 0.641262i \(-0.778411\pi\)
0.767322 0.641262i \(-0.221589\pi\)
\(858\) 0 0
\(859\) 1273.26 0.0505741 0.0252871 0.999680i \(-0.491950\pi\)
0.0252871 + 0.999680i \(0.491950\pi\)
\(860\) 0 0
\(861\) 8900.54 0.352299
\(862\) 0 0
\(863\) − 69.6881i − 0.00274880i −0.999999 0.00137440i \(-0.999563\pi\)
0.999999 0.00137440i \(-0.000437485\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6174.59i 0.241869i
\(868\) 0 0
\(869\) −24218.0 −0.945384
\(870\) 0 0
\(871\) 52036.3 2.02432
\(872\) 0 0
\(873\) 9206.75i 0.356931i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 20284.8i − 0.781038i −0.920595 0.390519i \(-0.872296\pi\)
0.920595 0.390519i \(-0.127704\pi\)
\(878\) 0 0
\(879\) −1044.08 −0.0400636
\(880\) 0 0
\(881\) −29637.5 −1.13339 −0.566693 0.823929i \(-0.691778\pi\)
−0.566693 + 0.823929i \(0.691778\pi\)
\(882\) 0 0
\(883\) 16749.3i 0.638344i 0.947697 + 0.319172i \(0.103405\pi\)
−0.947697 + 0.319172i \(0.896595\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 22904.8i − 0.867042i −0.901143 0.433521i \(-0.857271\pi\)
0.901143 0.433521i \(-0.142729\pi\)
\(888\) 0 0
\(889\) 43906.7 1.65645
\(890\) 0 0
\(891\) −12409.5 −0.466593
\(892\) 0 0
\(893\) 10.1108i 0 0.000378886i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3271.17i 0.121763i
\(898\) 0 0
\(899\) −7348.42 −0.272618
\(900\) 0 0
\(901\) 28727.8 1.06222
\(902\) 0 0
\(903\) 789.285i 0.0290872i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 20869.7i − 0.764020i −0.924158 0.382010i \(-0.875232\pi\)
0.924158 0.382010i \(-0.124768\pi\)
\(908\) 0 0
\(909\) 11058.8 0.403517
\(910\) 0 0
\(911\) −42361.0 −1.54060 −0.770298 0.637684i \(-0.779892\pi\)
−0.770298 + 0.637684i \(0.779892\pi\)
\(912\) 0 0
\(913\) − 34905.0i − 1.26527i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 9394.22i − 0.338304i
\(918\) 0 0
\(919\) −14136.3 −0.507413 −0.253707 0.967281i \(-0.581650\pi\)
−0.253707 + 0.967281i \(0.581650\pi\)
\(920\) 0 0
\(921\) −8486.01 −0.303609
\(922\) 0 0
\(923\) 19178.7i 0.683939i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 47144.5i 1.67036i
\(928\) 0 0
\(929\) 7897.49 0.278911 0.139455 0.990228i \(-0.455465\pi\)
0.139455 + 0.990228i \(0.455465\pi\)
\(930\) 0 0
\(931\) 1784.94 0.0628347
\(932\) 0 0
\(933\) − 6957.19i − 0.244124i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21499.1i 0.749567i 0.927112 + 0.374783i \(0.122283\pi\)
−0.927112 + 0.374783i \(0.877717\pi\)
\(938\) 0 0
\(939\) 9218.58 0.320380
\(940\) 0 0
\(941\) 30258.7 1.04825 0.524125 0.851641i \(-0.324392\pi\)
0.524125 + 0.851641i \(0.324392\pi\)
\(942\) 0 0
\(943\) − 4640.74i − 0.160258i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 12769.1i − 0.438163i −0.975707 0.219082i \(-0.929694\pi\)
0.975707 0.219082i \(-0.0703061\pi\)
\(948\) 0 0
\(949\) 34813.8 1.19083
\(950\) 0 0
\(951\) −5498.09 −0.187474
\(952\) 0 0
\(953\) − 28174.8i − 0.957683i −0.877901 0.478841i \(-0.841057\pi\)
0.877901 0.478841i \(-0.158943\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 9794.28i − 0.330830i
\(958\) 0 0
\(959\) −20308.8 −0.683841
\(960\) 0 0
\(961\) −27630.8 −0.927487
\(962\) 0 0
\(963\) − 32799.0i − 1.09754i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2696.72i − 0.0896800i −0.998994 0.0448400i \(-0.985722\pi\)
0.998994 0.0448400i \(-0.0142778\pi\)
\(968\) 0 0
\(969\) −1276.17 −0.0423079
\(970\) 0 0
\(971\) −29192.7 −0.964817 −0.482408 0.875946i \(-0.660238\pi\)
−0.482408 + 0.875946i \(0.660238\pi\)
\(972\) 0 0
\(973\) 2692.97i 0.0887283i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1150.88i − 0.0376867i −0.999822 0.0188433i \(-0.994002\pi\)
0.999822 0.0188433i \(-0.00599838\pi\)
\(978\) 0 0
\(979\) 35414.6 1.15613
\(980\) 0 0
\(981\) −42713.2 −1.39014
\(982\) 0 0
\(983\) 9924.92i 0.322030i 0.986952 + 0.161015i \(0.0514768\pi\)
−0.986952 + 0.161015i \(0.948523\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 30.9961i 0 0.000999612i
\(988\) 0 0
\(989\) 411.533 0.0132315
\(990\) 0 0
\(991\) 32446.8 1.04007 0.520034 0.854146i \(-0.325919\pi\)
0.520034 + 0.854146i \(0.325919\pi\)
\(992\) 0 0
\(993\) − 22502.4i − 0.719127i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 49280.6i 1.56543i 0.622381 + 0.782715i \(0.286166\pi\)
−0.622381 + 0.782715i \(0.713834\pi\)
\(998\) 0 0
\(999\) −4036.68 −0.127843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2300.4.c.d.1749.6 10
5.2 odd 4 2300.4.a.c.1.3 5
5.3 odd 4 460.4.a.b.1.3 5
5.4 even 2 inner 2300.4.c.d.1749.5 10
20.3 even 4 1840.4.a.o.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.4.a.b.1.3 5 5.3 odd 4
1840.4.a.o.1.3 5 20.3 even 4
2300.4.a.c.1.3 5 5.2 odd 4
2300.4.c.d.1749.5 10 5.4 even 2 inner
2300.4.c.d.1749.6 10 1.1 even 1 trivial