Properties

Label 2300.4.c.d.1749.3
Level $2300$
Weight $4$
Character 2300.1749
Analytic conductor $135.704$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,4,Mod(1749,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.1749"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,-60,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(135.704393013\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 164x^{8} + 9308x^{6} + 204385x^{4} + 1216296x^{2} + 1089936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 460)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1749.3
Root \(-6.72467i\) of defining polynomial
Character \(\chi\) \(=\) 2300.1749
Dual form 2300.4.c.d.1749.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.72467i q^{3} -12.6137i q^{7} -5.77185 q^{9} -21.9786 q^{11} -37.2893i q^{13} +62.5817i q^{17} +137.633 q^{19} -72.2093 q^{21} +23.0000i q^{23} -121.524i q^{27} +71.8975 q^{29} -219.731 q^{31} +125.820i q^{33} -296.223i q^{37} -213.469 q^{39} -305.282 q^{41} -140.234i q^{43} -185.509i q^{47} +183.895 q^{49} +358.260 q^{51} -312.176i q^{53} -787.903i q^{57} +161.771 q^{59} +835.780 q^{61} +72.8043i q^{63} -24.5018i q^{67} +131.667 q^{69} -973.973 q^{71} +343.447i q^{73} +277.231i q^{77} -1214.62 q^{79} -851.526 q^{81} -749.055i q^{83} -411.590i q^{87} -811.662 q^{89} -470.356 q^{91} +1257.89i q^{93} +1026.90i q^{97} +126.857 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 60 q^{9} + 14 q^{11} + 26 q^{19} + 506 q^{29} - 196 q^{31} + 820 q^{39} - 1548 q^{41} + 1366 q^{49} - 1314 q^{51} + 1526 q^{59} + 674 q^{61} - 138 q^{69} - 3008 q^{71} - 1252 q^{79} - 1918 q^{81}+ \cdots - 222 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 5.72467i − 1.10171i −0.834600 0.550857i \(-0.814301\pi\)
0.834600 0.550857i \(-0.185699\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 12.6137i − 0.681076i −0.940231 0.340538i \(-0.889391\pi\)
0.940231 0.340538i \(-0.110609\pi\)
\(8\) 0 0
\(9\) −5.77185 −0.213772
\(10\) 0 0
\(11\) −21.9786 −0.602435 −0.301217 0.953555i \(-0.597393\pi\)
−0.301217 + 0.953555i \(0.597393\pi\)
\(12\) 0 0
\(13\) − 37.2893i − 0.795554i −0.917482 0.397777i \(-0.869782\pi\)
0.917482 0.397777i \(-0.130218\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 62.5817i 0.892841i 0.894823 + 0.446420i \(0.147301\pi\)
−0.894823 + 0.446420i \(0.852699\pi\)
\(18\) 0 0
\(19\) 137.633 1.66185 0.830925 0.556384i \(-0.187812\pi\)
0.830925 + 0.556384i \(0.187812\pi\)
\(20\) 0 0
\(21\) −72.2093 −0.750350
\(22\) 0 0
\(23\) 23.0000i 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 121.524i − 0.866198i
\(28\) 0 0
\(29\) 71.8975 0.460380 0.230190 0.973146i \(-0.426065\pi\)
0.230190 + 0.973146i \(0.426065\pi\)
\(30\) 0 0
\(31\) −219.731 −1.27306 −0.636531 0.771251i \(-0.719631\pi\)
−0.636531 + 0.771251i \(0.719631\pi\)
\(32\) 0 0
\(33\) 125.820i 0.663710i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 296.223i − 1.31618i −0.752939 0.658091i \(-0.771364\pi\)
0.752939 0.658091i \(-0.228636\pi\)
\(38\) 0 0
\(39\) −213.469 −0.876473
\(40\) 0 0
\(41\) −305.282 −1.16285 −0.581427 0.813599i \(-0.697505\pi\)
−0.581427 + 0.813599i \(0.697505\pi\)
\(42\) 0 0
\(43\) − 140.234i − 0.497338i −0.968588 0.248669i \(-0.920007\pi\)
0.968588 0.248669i \(-0.0799932\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 185.509i − 0.575730i −0.957671 0.287865i \(-0.907055\pi\)
0.957671 0.287865i \(-0.0929454\pi\)
\(48\) 0 0
\(49\) 183.895 0.536136
\(50\) 0 0
\(51\) 358.260 0.983654
\(52\) 0 0
\(53\) − 312.176i − 0.809069i −0.914523 0.404534i \(-0.867434\pi\)
0.914523 0.404534i \(-0.132566\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 787.903i − 1.83088i
\(58\) 0 0
\(59\) 161.771 0.356964 0.178482 0.983943i \(-0.442881\pi\)
0.178482 + 0.983943i \(0.442881\pi\)
\(60\) 0 0
\(61\) 835.780 1.75427 0.877137 0.480240i \(-0.159450\pi\)
0.877137 + 0.480240i \(0.159450\pi\)
\(62\) 0 0
\(63\) 72.8043i 0.145595i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 24.5018i − 0.0446772i −0.999750 0.0223386i \(-0.992889\pi\)
0.999750 0.0223386i \(-0.00711119\pi\)
\(68\) 0 0
\(69\) 131.667 0.229723
\(70\) 0 0
\(71\) −973.973 −1.62802 −0.814009 0.580852i \(-0.802719\pi\)
−0.814009 + 0.580852i \(0.802719\pi\)
\(72\) 0 0
\(73\) 343.447i 0.550650i 0.961351 + 0.275325i \(0.0887855\pi\)
−0.961351 + 0.275325i \(0.911214\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 277.231i 0.410304i
\(78\) 0 0
\(79\) −1214.62 −1.72981 −0.864905 0.501935i \(-0.832622\pi\)
−0.864905 + 0.501935i \(0.832622\pi\)
\(80\) 0 0
\(81\) −851.526 −1.16807
\(82\) 0 0
\(83\) − 749.055i − 0.990597i −0.868723 0.495298i \(-0.835059\pi\)
0.868723 0.495298i \(-0.164941\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 411.590i − 0.507207i
\(88\) 0 0
\(89\) −811.662 −0.966696 −0.483348 0.875428i \(-0.660579\pi\)
−0.483348 + 0.875428i \(0.660579\pi\)
\(90\) 0 0
\(91\) −470.356 −0.541833
\(92\) 0 0
\(93\) 1257.89i 1.40255i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1026.90i 1.07491i 0.843293 + 0.537455i \(0.180614\pi\)
−0.843293 + 0.537455i \(0.819386\pi\)
\(98\) 0 0
\(99\) 126.857 0.128784
\(100\) 0 0
\(101\) −788.330 −0.776651 −0.388326 0.921522i \(-0.626946\pi\)
−0.388326 + 0.921522i \(0.626946\pi\)
\(102\) 0 0
\(103\) − 471.764i − 0.451304i −0.974208 0.225652i \(-0.927549\pi\)
0.974208 0.225652i \(-0.0724512\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1402.85i − 1.26746i −0.773553 0.633732i \(-0.781522\pi\)
0.773553 0.633732i \(-0.218478\pi\)
\(108\) 0 0
\(109\) 2151.31 1.89044 0.945221 0.326432i \(-0.105846\pi\)
0.945221 + 0.326432i \(0.105846\pi\)
\(110\) 0 0
\(111\) −1695.78 −1.45005
\(112\) 0 0
\(113\) − 754.833i − 0.628396i −0.949358 0.314198i \(-0.898264\pi\)
0.949358 0.314198i \(-0.101736\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 215.228i 0.170067i
\(118\) 0 0
\(119\) 789.387 0.608092
\(120\) 0 0
\(121\) −847.943 −0.637072
\(122\) 0 0
\(123\) 1747.64i 1.28113i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2161.28i 1.51010i 0.655667 + 0.755050i \(0.272388\pi\)
−0.655667 + 0.755050i \(0.727612\pi\)
\(128\) 0 0
\(129\) −802.796 −0.547924
\(130\) 0 0
\(131\) 397.736 0.265270 0.132635 0.991165i \(-0.457656\pi\)
0.132635 + 0.991165i \(0.457656\pi\)
\(132\) 0 0
\(133\) − 1736.06i − 1.13185i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1660.73i − 1.03566i −0.855483 0.517831i \(-0.826740\pi\)
0.855483 0.517831i \(-0.173260\pi\)
\(138\) 0 0
\(139\) 997.853 0.608897 0.304449 0.952529i \(-0.401528\pi\)
0.304449 + 0.952529i \(0.401528\pi\)
\(140\) 0 0
\(141\) −1061.98 −0.634289
\(142\) 0 0
\(143\) 819.566i 0.479270i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1052.74i − 0.590668i
\(148\) 0 0
\(149\) −3014.50 −1.65743 −0.828715 0.559671i \(-0.810928\pi\)
−0.828715 + 0.559671i \(0.810928\pi\)
\(150\) 0 0
\(151\) −684.908 −0.369120 −0.184560 0.982821i \(-0.559086\pi\)
−0.184560 + 0.982821i \(0.559086\pi\)
\(152\) 0 0
\(153\) − 361.212i − 0.190864i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 727.598i 0.369864i 0.982751 + 0.184932i \(0.0592065\pi\)
−0.982751 + 0.184932i \(0.940794\pi\)
\(158\) 0 0
\(159\) −1787.10 −0.891362
\(160\) 0 0
\(161\) 290.115 0.142014
\(162\) 0 0
\(163\) 768.718i 0.369390i 0.982796 + 0.184695i \(0.0591298\pi\)
−0.982796 + 0.184695i \(0.940870\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 243.397i − 0.112782i −0.998409 0.0563910i \(-0.982041\pi\)
0.998409 0.0563910i \(-0.0179593\pi\)
\(168\) 0 0
\(169\) 806.505 0.367094
\(170\) 0 0
\(171\) −794.396 −0.355257
\(172\) 0 0
\(173\) 201.538i 0.0885702i 0.999019 + 0.0442851i \(0.0141010\pi\)
−0.999019 + 0.0442851i \(0.985899\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 926.088i − 0.393272i
\(178\) 0 0
\(179\) 722.564 0.301715 0.150857 0.988556i \(-0.451797\pi\)
0.150857 + 0.988556i \(0.451797\pi\)
\(180\) 0 0
\(181\) 2117.76 0.869678 0.434839 0.900508i \(-0.356805\pi\)
0.434839 + 0.900508i \(0.356805\pi\)
\(182\) 0 0
\(183\) − 4784.57i − 1.93271i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1375.46i − 0.537878i
\(188\) 0 0
\(189\) −1532.87 −0.589946
\(190\) 0 0
\(191\) 82.9624 0.0314290 0.0157145 0.999877i \(-0.494998\pi\)
0.0157145 + 0.999877i \(0.494998\pi\)
\(192\) 0 0
\(193\) − 1350.43i − 0.503657i −0.967772 0.251829i \(-0.918968\pi\)
0.967772 0.251829i \(-0.0810320\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4317.69i 1.56154i 0.624820 + 0.780769i \(0.285172\pi\)
−0.624820 + 0.780769i \(0.714828\pi\)
\(198\) 0 0
\(199\) −3026.27 −1.07802 −0.539011 0.842299i \(-0.681202\pi\)
−0.539011 + 0.842299i \(0.681202\pi\)
\(200\) 0 0
\(201\) −140.265 −0.0492215
\(202\) 0 0
\(203\) − 906.893i − 0.313554i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 132.752i − 0.0445746i
\(208\) 0 0
\(209\) −3024.97 −1.00116
\(210\) 0 0
\(211\) 2292.01 0.747812 0.373906 0.927467i \(-0.378018\pi\)
0.373906 + 0.927467i \(0.378018\pi\)
\(212\) 0 0
\(213\) 5575.67i 1.79361i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2771.62i 0.867051i
\(218\) 0 0
\(219\) 1966.12 0.606659
\(220\) 0 0
\(221\) 2333.63 0.710303
\(222\) 0 0
\(223\) 2997.29i 0.900061i 0.893013 + 0.450030i \(0.148587\pi\)
−0.893013 + 0.450030i \(0.851413\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 5786.16i − 1.69181i −0.533333 0.845905i \(-0.679061\pi\)
0.533333 0.845905i \(-0.320939\pi\)
\(228\) 0 0
\(229\) −4516.35 −1.30327 −0.651635 0.758532i \(-0.725917\pi\)
−0.651635 + 0.758532i \(0.725917\pi\)
\(230\) 0 0
\(231\) 1587.05 0.452037
\(232\) 0 0
\(233\) − 2990.75i − 0.840903i −0.907315 0.420452i \(-0.861872\pi\)
0.907315 0.420452i \(-0.138128\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6953.28i 1.90575i
\(238\) 0 0
\(239\) −4043.74 −1.09443 −0.547213 0.836994i \(-0.684311\pi\)
−0.547213 + 0.836994i \(0.684311\pi\)
\(240\) 0 0
\(241\) 3653.64 0.976564 0.488282 0.872686i \(-0.337624\pi\)
0.488282 + 0.872686i \(0.337624\pi\)
\(242\) 0 0
\(243\) 1593.55i 0.420684i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 5132.24i − 1.32209i
\(248\) 0 0
\(249\) −4288.09 −1.09135
\(250\) 0 0
\(251\) −6799.45 −1.70987 −0.854935 0.518735i \(-0.826403\pi\)
−0.854935 + 0.518735i \(0.826403\pi\)
\(252\) 0 0
\(253\) − 505.507i − 0.125616i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 179.925i 0.0436710i 0.999762 + 0.0218355i \(0.00695100\pi\)
−0.999762 + 0.0218355i \(0.993049\pi\)
\(258\) 0 0
\(259\) −3736.46 −0.896419
\(260\) 0 0
\(261\) −414.981 −0.0984165
\(262\) 0 0
\(263\) 1148.48i 0.269271i 0.990895 + 0.134635i \(0.0429863\pi\)
−0.990895 + 0.134635i \(0.957014\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4646.50i 1.06502i
\(268\) 0 0
\(269\) −2999.90 −0.679953 −0.339976 0.940434i \(-0.610419\pi\)
−0.339976 + 0.940434i \(0.610419\pi\)
\(270\) 0 0
\(271\) 5587.83 1.25253 0.626266 0.779609i \(-0.284582\pi\)
0.626266 + 0.779609i \(0.284582\pi\)
\(272\) 0 0
\(273\) 2692.64i 0.596944i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6219.06i 1.34898i 0.738285 + 0.674489i \(0.235636\pi\)
−0.738285 + 0.674489i \(0.764364\pi\)
\(278\) 0 0
\(279\) 1268.26 0.272145
\(280\) 0 0
\(281\) −6770.91 −1.43743 −0.718717 0.695303i \(-0.755270\pi\)
−0.718717 + 0.695303i \(0.755270\pi\)
\(282\) 0 0
\(283\) 7811.42i 1.64078i 0.571804 + 0.820390i \(0.306244\pi\)
−0.571804 + 0.820390i \(0.693756\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3850.73i 0.791991i
\(288\) 0 0
\(289\) 996.531 0.202836
\(290\) 0 0
\(291\) 5878.68 1.18424
\(292\) 0 0
\(293\) 8415.02i 1.67785i 0.544246 + 0.838926i \(0.316816\pi\)
−0.544246 + 0.838926i \(0.683184\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2670.93i 0.521828i
\(298\) 0 0
\(299\) 857.655 0.165884
\(300\) 0 0
\(301\) −1768.87 −0.338725
\(302\) 0 0
\(303\) 4512.93i 0.855647i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 9633.23i − 1.79087i −0.445192 0.895435i \(-0.646865\pi\)
0.445192 0.895435i \(-0.353135\pi\)
\(308\) 0 0
\(309\) −2700.69 −0.497207
\(310\) 0 0
\(311\) −7000.64 −1.27643 −0.638216 0.769858i \(-0.720327\pi\)
−0.638216 + 0.769858i \(0.720327\pi\)
\(312\) 0 0
\(313\) 2954.79i 0.533593i 0.963753 + 0.266796i \(0.0859651\pi\)
−0.963753 + 0.266796i \(0.914035\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 4015.68i − 0.711492i −0.934583 0.355746i \(-0.884227\pi\)
0.934583 0.355746i \(-0.115773\pi\)
\(318\) 0 0
\(319\) −1580.20 −0.277349
\(320\) 0 0
\(321\) −8030.85 −1.39638
\(322\) 0 0
\(323\) 8613.30i 1.48377i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 12315.5i − 2.08272i
\(328\) 0 0
\(329\) −2339.96 −0.392116
\(330\) 0 0
\(331\) 596.567 0.0990644 0.0495322 0.998773i \(-0.484227\pi\)
0.0495322 + 0.998773i \(0.484227\pi\)
\(332\) 0 0
\(333\) 1709.75i 0.281363i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2162.05i 0.349479i 0.984615 + 0.174739i \(0.0559083\pi\)
−0.984615 + 0.174739i \(0.944092\pi\)
\(338\) 0 0
\(339\) −4321.17 −0.692312
\(340\) 0 0
\(341\) 4829.38 0.766937
\(342\) 0 0
\(343\) − 6646.09i − 1.04622i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 8014.61i − 1.23990i −0.784639 0.619952i \(-0.787152\pi\)
0.784639 0.619952i \(-0.212848\pi\)
\(348\) 0 0
\(349\) −3264.77 −0.500743 −0.250371 0.968150i \(-0.580553\pi\)
−0.250371 + 0.968150i \(0.580553\pi\)
\(350\) 0 0
\(351\) −4531.56 −0.689107
\(352\) 0 0
\(353\) 6659.27i 1.00407i 0.864847 + 0.502036i \(0.167416\pi\)
−0.864847 + 0.502036i \(0.832584\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4518.98i − 0.669943i
\(358\) 0 0
\(359\) −670.397 −0.0985577 −0.0492789 0.998785i \(-0.515692\pi\)
−0.0492789 + 0.998785i \(0.515692\pi\)
\(360\) 0 0
\(361\) 12083.8 1.76175
\(362\) 0 0
\(363\) 4854.19i 0.701871i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 3528.04i 0.501804i 0.968013 + 0.250902i \(0.0807272\pi\)
−0.968013 + 0.250902i \(0.919273\pi\)
\(368\) 0 0
\(369\) 1762.04 0.248586
\(370\) 0 0
\(371\) −3937.69 −0.551037
\(372\) 0 0
\(373\) 2718.66i 0.377391i 0.982036 + 0.188695i \(0.0604258\pi\)
−0.982036 + 0.188695i \(0.939574\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2681.01i − 0.366258i
\(378\) 0 0
\(379\) −10773.8 −1.46019 −0.730096 0.683345i \(-0.760525\pi\)
−0.730096 + 0.683345i \(0.760525\pi\)
\(380\) 0 0
\(381\) 12372.6 1.66370
\(382\) 0 0
\(383\) 6104.18i 0.814384i 0.913343 + 0.407192i \(0.133492\pi\)
−0.913343 + 0.407192i \(0.866508\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 809.412i 0.106317i
\(388\) 0 0
\(389\) 5056.94 0.659118 0.329559 0.944135i \(-0.393100\pi\)
0.329559 + 0.944135i \(0.393100\pi\)
\(390\) 0 0
\(391\) −1439.38 −0.186170
\(392\) 0 0
\(393\) − 2276.91i − 0.292251i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8320.52i 1.05188i 0.850523 + 0.525938i \(0.176286\pi\)
−0.850523 + 0.525938i \(0.823714\pi\)
\(398\) 0 0
\(399\) −9938.37 −1.24697
\(400\) 0 0
\(401\) 1253.78 0.156137 0.0780685 0.996948i \(-0.475125\pi\)
0.0780685 + 0.996948i \(0.475125\pi\)
\(402\) 0 0
\(403\) 8193.64i 1.01279i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6510.55i 0.792914i
\(408\) 0 0
\(409\) 11283.0 1.36408 0.682041 0.731314i \(-0.261093\pi\)
0.682041 + 0.731314i \(0.261093\pi\)
\(410\) 0 0
\(411\) −9507.13 −1.14100
\(412\) 0 0
\(413\) − 2040.54i − 0.243119i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 5712.38i − 0.670830i
\(418\) 0 0
\(419\) −4178.10 −0.487144 −0.243572 0.969883i \(-0.578319\pi\)
−0.243572 + 0.969883i \(0.578319\pi\)
\(420\) 0 0
\(421\) −11693.0 −1.35364 −0.676821 0.736147i \(-0.736643\pi\)
−0.676821 + 0.736147i \(0.736643\pi\)
\(422\) 0 0
\(423\) 1070.73i 0.123075i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 10542.3i − 1.19479i
\(428\) 0 0
\(429\) 4691.74 0.528018
\(430\) 0 0
\(431\) −11158.2 −1.24703 −0.623515 0.781812i \(-0.714296\pi\)
−0.623515 + 0.781812i \(0.714296\pi\)
\(432\) 0 0
\(433\) 13192.6i 1.46419i 0.681201 + 0.732096i \(0.261458\pi\)
−0.681201 + 0.732096i \(0.738542\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3165.56i 0.346520i
\(438\) 0 0
\(439\) 1659.40 0.180407 0.0902037 0.995923i \(-0.471248\pi\)
0.0902037 + 0.995923i \(0.471248\pi\)
\(440\) 0 0
\(441\) −1061.41 −0.114611
\(442\) 0 0
\(443\) − 5144.57i − 0.551752i −0.961193 0.275876i \(-0.911032\pi\)
0.961193 0.275876i \(-0.0889679\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 17257.0i 1.82601i
\(448\) 0 0
\(449\) −5469.59 −0.574891 −0.287446 0.957797i \(-0.592806\pi\)
−0.287446 + 0.957797i \(0.592806\pi\)
\(450\) 0 0
\(451\) 6709.65 0.700544
\(452\) 0 0
\(453\) 3920.87i 0.406664i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6063.04i 0.620606i 0.950638 + 0.310303i \(0.100431\pi\)
−0.950638 + 0.310303i \(0.899569\pi\)
\(458\) 0 0
\(459\) 7605.19 0.773377
\(460\) 0 0
\(461\) 4025.39 0.406684 0.203342 0.979108i \(-0.434820\pi\)
0.203342 + 0.979108i \(0.434820\pi\)
\(462\) 0 0
\(463\) 4617.49i 0.463483i 0.972777 + 0.231742i \(0.0744424\pi\)
−0.972777 + 0.231742i \(0.925558\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4012.00i 0.397544i 0.980046 + 0.198772i \(0.0636953\pi\)
−0.980046 + 0.198772i \(0.936305\pi\)
\(468\) 0 0
\(469\) −309.058 −0.0304285
\(470\) 0 0
\(471\) 4165.26 0.407484
\(472\) 0 0
\(473\) 3082.15i 0.299614i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1801.83i 0.172956i
\(478\) 0 0
\(479\) 7317.02 0.697961 0.348980 0.937130i \(-0.386528\pi\)
0.348980 + 0.937130i \(0.386528\pi\)
\(480\) 0 0
\(481\) −11046.0 −1.04709
\(482\) 0 0
\(483\) − 1660.81i − 0.156459i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 3708.67i − 0.345084i −0.985002 0.172542i \(-0.944802\pi\)
0.985002 0.172542i \(-0.0551981\pi\)
\(488\) 0 0
\(489\) 4400.66 0.406962
\(490\) 0 0
\(491\) 6689.69 0.614871 0.307435 0.951569i \(-0.400529\pi\)
0.307435 + 0.951569i \(0.400529\pi\)
\(492\) 0 0
\(493\) 4499.47i 0.411046i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12285.4i 1.10880i
\(498\) 0 0
\(499\) −17381.9 −1.55936 −0.779678 0.626180i \(-0.784617\pi\)
−0.779678 + 0.626180i \(0.784617\pi\)
\(500\) 0 0
\(501\) −1393.37 −0.124253
\(502\) 0 0
\(503\) − 9771.20i − 0.866156i −0.901357 0.433078i \(-0.857428\pi\)
0.901357 0.433078i \(-0.142572\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 4616.97i − 0.404432i
\(508\) 0 0
\(509\) −5820.46 −0.506852 −0.253426 0.967355i \(-0.581557\pi\)
−0.253426 + 0.967355i \(0.581557\pi\)
\(510\) 0 0
\(511\) 4332.14 0.375035
\(512\) 0 0
\(513\) − 16725.7i − 1.43949i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4077.22i 0.346840i
\(518\) 0 0
\(519\) 1153.74 0.0975789
\(520\) 0 0
\(521\) −6357.64 −0.534613 −0.267307 0.963612i \(-0.586134\pi\)
−0.267307 + 0.963612i \(0.586134\pi\)
\(522\) 0 0
\(523\) 10556.2i 0.882580i 0.897364 + 0.441290i \(0.145479\pi\)
−0.897364 + 0.441290i \(0.854521\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 13751.2i − 1.13664i
\(528\) 0 0
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −933.720 −0.0763089
\(532\) 0 0
\(533\) 11383.8i 0.925113i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 4136.44i − 0.332403i
\(538\) 0 0
\(539\) −4041.74 −0.322987
\(540\) 0 0
\(541\) −16883.4 −1.34172 −0.670862 0.741582i \(-0.734076\pi\)
−0.670862 + 0.741582i \(0.734076\pi\)
\(542\) 0 0
\(543\) − 12123.5i − 0.958136i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 14318.4i − 1.11922i −0.828757 0.559608i \(-0.810952\pi\)
0.828757 0.559608i \(-0.189048\pi\)
\(548\) 0 0
\(549\) −4824.00 −0.375015
\(550\) 0 0
\(551\) 9895.47 0.765084
\(552\) 0 0
\(553\) 15320.8i 1.17813i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 11764.7i − 0.894946i −0.894297 0.447473i \(-0.852324\pi\)
0.894297 0.447473i \(-0.147676\pi\)
\(558\) 0 0
\(559\) −5229.25 −0.395660
\(560\) 0 0
\(561\) −7874.03 −0.592588
\(562\) 0 0
\(563\) 21201.3i 1.58709i 0.608514 + 0.793543i \(0.291766\pi\)
−0.608514 + 0.793543i \(0.708234\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 10740.9i 0.795546i
\(568\) 0 0
\(569\) 17206.5 1.26772 0.633861 0.773447i \(-0.281469\pi\)
0.633861 + 0.773447i \(0.281469\pi\)
\(570\) 0 0
\(571\) 12208.3 0.894746 0.447373 0.894348i \(-0.352360\pi\)
0.447373 + 0.894348i \(0.352360\pi\)
\(572\) 0 0
\(573\) − 474.932i − 0.0346258i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12432.0i 0.896967i 0.893791 + 0.448484i \(0.148036\pi\)
−0.893791 + 0.448484i \(0.851964\pi\)
\(578\) 0 0
\(579\) −7730.75 −0.554886
\(580\) 0 0
\(581\) −9448.36 −0.674671
\(582\) 0 0
\(583\) 6861.17i 0.487411i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 18732.7i − 1.31718i −0.752504 0.658588i \(-0.771154\pi\)
0.752504 0.658588i \(-0.228846\pi\)
\(588\) 0 0
\(589\) −30242.3 −2.11564
\(590\) 0 0
\(591\) 24717.4 1.72037
\(592\) 0 0
\(593\) − 16320.1i − 1.13016i −0.825036 0.565081i \(-0.808845\pi\)
0.825036 0.565081i \(-0.191155\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17324.4i 1.18767i
\(598\) 0 0
\(599\) 7015.52 0.478542 0.239271 0.970953i \(-0.423092\pi\)
0.239271 + 0.970953i \(0.423092\pi\)
\(600\) 0 0
\(601\) −4517.10 −0.306583 −0.153292 0.988181i \(-0.548987\pi\)
−0.153292 + 0.988181i \(0.548987\pi\)
\(602\) 0 0
\(603\) 141.421i 0.00955074i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 9861.96i − 0.659448i −0.944077 0.329724i \(-0.893044\pi\)
0.944077 0.329724i \(-0.106956\pi\)
\(608\) 0 0
\(609\) −5191.67 −0.345447
\(610\) 0 0
\(611\) −6917.52 −0.458024
\(612\) 0 0
\(613\) − 20044.7i − 1.32071i −0.750953 0.660356i \(-0.770405\pi\)
0.750953 0.660356i \(-0.229595\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 3604.26i − 0.235174i −0.993063 0.117587i \(-0.962484\pi\)
0.993063 0.117587i \(-0.0375158\pi\)
\(618\) 0 0
\(619\) −14864.7 −0.965204 −0.482602 0.875840i \(-0.660308\pi\)
−0.482602 + 0.875840i \(0.660308\pi\)
\(620\) 0 0
\(621\) 2795.06 0.180615
\(622\) 0 0
\(623\) 10238.1i 0.658393i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 17317.0i 1.10299i
\(628\) 0 0
\(629\) 18538.1 1.17514
\(630\) 0 0
\(631\) 12677.7 0.799828 0.399914 0.916553i \(-0.369040\pi\)
0.399914 + 0.916553i \(0.369040\pi\)
\(632\) 0 0
\(633\) − 13121.0i − 0.823875i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 6857.31i − 0.426525i
\(638\) 0 0
\(639\) 5621.62 0.348025
\(640\) 0 0
\(641\) −19168.5 −1.18114 −0.590571 0.806986i \(-0.701097\pi\)
−0.590571 + 0.806986i \(0.701097\pi\)
\(642\) 0 0
\(643\) − 31298.6i − 1.91959i −0.280707 0.959793i \(-0.590569\pi\)
0.280707 0.959793i \(-0.409431\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 26340.3i − 1.60053i −0.599643 0.800267i \(-0.704691\pi\)
0.599643 0.800267i \(-0.295309\pi\)
\(648\) 0 0
\(649\) −3555.50 −0.215047
\(650\) 0 0
\(651\) 15866.6 0.955242
\(652\) 0 0
\(653\) − 27113.8i − 1.62488i −0.583046 0.812439i \(-0.698139\pi\)
0.583046 0.812439i \(-0.301861\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 1982.33i − 0.117714i
\(658\) 0 0
\(659\) 24125.5 1.42609 0.713046 0.701117i \(-0.247315\pi\)
0.713046 + 0.701117i \(0.247315\pi\)
\(660\) 0 0
\(661\) 1776.69 0.104546 0.0522732 0.998633i \(-0.483353\pi\)
0.0522732 + 0.998633i \(0.483353\pi\)
\(662\) 0 0
\(663\) − 13359.3i − 0.782550i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1653.64i 0.0959960i
\(668\) 0 0
\(669\) 17158.5 0.991609
\(670\) 0 0
\(671\) −18369.2 −1.05684
\(672\) 0 0
\(673\) 14137.6i 0.809756i 0.914371 + 0.404878i \(0.132686\pi\)
−0.914371 + 0.404878i \(0.867314\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 9057.23i − 0.514177i −0.966388 0.257088i \(-0.917237\pi\)
0.966388 0.257088i \(-0.0827632\pi\)
\(678\) 0 0
\(679\) 12953.0 0.732094
\(680\) 0 0
\(681\) −33123.9 −1.86389
\(682\) 0 0
\(683\) − 23206.6i − 1.30011i −0.759888 0.650054i \(-0.774746\pi\)
0.759888 0.650054i \(-0.225254\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 25854.6i 1.43583i
\(688\) 0 0
\(689\) −11640.8 −0.643658
\(690\) 0 0
\(691\) 2060.79 0.113453 0.0567265 0.998390i \(-0.481934\pi\)
0.0567265 + 0.998390i \(0.481934\pi\)
\(692\) 0 0
\(693\) − 1600.13i − 0.0877115i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 19105.0i − 1.03824i
\(698\) 0 0
\(699\) −17121.1 −0.926434
\(700\) 0 0
\(701\) 4057.66 0.218624 0.109312 0.994007i \(-0.465135\pi\)
0.109312 + 0.994007i \(0.465135\pi\)
\(702\) 0 0
\(703\) − 40770.0i − 2.18730i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9943.76i 0.528958i
\(708\) 0 0
\(709\) −18777.0 −0.994622 −0.497311 0.867572i \(-0.665679\pi\)
−0.497311 + 0.867572i \(0.665679\pi\)
\(710\) 0 0
\(711\) 7010.58 0.369785
\(712\) 0 0
\(713\) − 5053.82i − 0.265452i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 23149.1i 1.20574i
\(718\) 0 0
\(719\) 2217.63 0.115026 0.0575129 0.998345i \(-0.481683\pi\)
0.0575129 + 0.998345i \(0.481683\pi\)
\(720\) 0 0
\(721\) −5950.69 −0.307372
\(722\) 0 0
\(723\) − 20915.9i − 1.07589i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 23162.5i − 1.18164i −0.806805 0.590818i \(-0.798805\pi\)
0.806805 0.590818i \(-0.201195\pi\)
\(728\) 0 0
\(729\) −13868.6 −0.704600
\(730\) 0 0
\(731\) 8776.11 0.444044
\(732\) 0 0
\(733\) − 11686.4i − 0.588875i −0.955671 0.294438i \(-0.904868\pi\)
0.955671 0.294438i \(-0.0951324\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 538.514i 0.0269151i
\(738\) 0 0
\(739\) 7408.28 0.368766 0.184383 0.982854i \(-0.440971\pi\)
0.184383 + 0.982854i \(0.440971\pi\)
\(740\) 0 0
\(741\) −29380.4 −1.45657
\(742\) 0 0
\(743\) 7008.68i 0.346061i 0.984916 + 0.173031i \(0.0553560\pi\)
−0.984916 + 0.173031i \(0.944644\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4323.43i 0.211762i
\(748\) 0 0
\(749\) −17695.1 −0.863238
\(750\) 0 0
\(751\) 10916.9 0.530443 0.265222 0.964187i \(-0.414555\pi\)
0.265222 + 0.964187i \(0.414555\pi\)
\(752\) 0 0
\(753\) 38924.6i 1.88379i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 14124.7i 0.678165i 0.940757 + 0.339083i \(0.110117\pi\)
−0.940757 + 0.339083i \(0.889883\pi\)
\(758\) 0 0
\(759\) −2893.86 −0.138393
\(760\) 0 0
\(761\) 6947.27 0.330931 0.165465 0.986216i \(-0.447087\pi\)
0.165465 + 0.986216i \(0.447087\pi\)
\(762\) 0 0
\(763\) − 27136.0i − 1.28753i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 6032.35i − 0.283984i
\(768\) 0 0
\(769\) −19409.1 −0.910158 −0.455079 0.890451i \(-0.650389\pi\)
−0.455079 + 0.890451i \(0.650389\pi\)
\(770\) 0 0
\(771\) 1030.01 0.0481129
\(772\) 0 0
\(773\) 32794.2i 1.52591i 0.646453 + 0.762954i \(0.276252\pi\)
−0.646453 + 0.762954i \(0.723748\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 21390.0i 0.987597i
\(778\) 0 0
\(779\) −42016.8 −1.93249
\(780\) 0 0
\(781\) 21406.5 0.980775
\(782\) 0 0
\(783\) − 8737.29i − 0.398781i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1234.92i 0.0559341i 0.999609 + 0.0279670i \(0.00890335\pi\)
−0.999609 + 0.0279670i \(0.991097\pi\)
\(788\) 0 0
\(789\) 6574.66 0.296659
\(790\) 0 0
\(791\) −9521.24 −0.427985
\(792\) 0 0
\(793\) − 31165.7i − 1.39562i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 19464.3i − 0.865070i −0.901617 0.432535i \(-0.857619\pi\)
0.901617 0.432535i \(-0.142381\pi\)
\(798\) 0 0
\(799\) 11609.5 0.514035
\(800\) 0 0
\(801\) 4684.79 0.206653
\(802\) 0 0
\(803\) − 7548.48i − 0.331731i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 17173.4i 0.749113i
\(808\) 0 0
\(809\) 33587.0 1.45965 0.729824 0.683635i \(-0.239602\pi\)
0.729824 + 0.683635i \(0.239602\pi\)
\(810\) 0 0
\(811\) −2612.03 −0.113096 −0.0565479 0.998400i \(-0.518009\pi\)
−0.0565479 + 0.998400i \(0.518009\pi\)
\(812\) 0 0
\(813\) − 31988.5i − 1.37993i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 19300.9i − 0.826502i
\(818\) 0 0
\(819\) 2714.83 0.115829
\(820\) 0 0
\(821\) −17811.2 −0.757146 −0.378573 0.925572i \(-0.623585\pi\)
−0.378573 + 0.925572i \(0.623585\pi\)
\(822\) 0 0
\(823\) − 30535.0i − 1.29330i −0.762788 0.646649i \(-0.776170\pi\)
0.762788 0.646649i \(-0.223830\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3344.05i − 0.140609i −0.997526 0.0703047i \(-0.977603\pi\)
0.997526 0.0703047i \(-0.0223972\pi\)
\(828\) 0 0
\(829\) 24905.6 1.04344 0.521718 0.853118i \(-0.325291\pi\)
0.521718 + 0.853118i \(0.325291\pi\)
\(830\) 0 0
\(831\) 35602.1 1.48619
\(832\) 0 0
\(833\) 11508.4i 0.478684i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 26702.7i 1.10272i
\(838\) 0 0
\(839\) 38233.9 1.57328 0.786639 0.617413i \(-0.211819\pi\)
0.786639 + 0.617413i \(0.211819\pi\)
\(840\) 0 0
\(841\) −19219.7 −0.788050
\(842\) 0 0
\(843\) 38761.2i 1.58364i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10695.7i 0.433894i
\(848\) 0 0
\(849\) 44717.8 1.80767
\(850\) 0 0
\(851\) 6813.12 0.274443
\(852\) 0 0
\(853\) − 21297.4i − 0.854875i −0.904045 0.427438i \(-0.859416\pi\)
0.904045 0.427438i \(-0.140584\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2100.08i − 0.0837074i −0.999124 0.0418537i \(-0.986674\pi\)
0.999124 0.0418537i \(-0.0133263\pi\)
\(858\) 0 0
\(859\) 16555.4 0.657582 0.328791 0.944403i \(-0.393359\pi\)
0.328791 + 0.944403i \(0.393359\pi\)
\(860\) 0 0
\(861\) 22044.2 0.872547
\(862\) 0 0
\(863\) 40225.0i 1.58664i 0.608802 + 0.793322i \(0.291650\pi\)
−0.608802 + 0.793322i \(0.708350\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 5704.81i − 0.223467i
\(868\) 0 0
\(869\) 26695.5 1.04210
\(870\) 0 0
\(871\) −913.656 −0.0355431
\(872\) 0 0
\(873\) − 5927.13i − 0.229786i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 35335.8i 1.36055i 0.732955 + 0.680277i \(0.238141\pi\)
−0.732955 + 0.680277i \(0.761859\pi\)
\(878\) 0 0
\(879\) 48173.2 1.84851
\(880\) 0 0
\(881\) 28460.9 1.08839 0.544196 0.838958i \(-0.316835\pi\)
0.544196 + 0.838958i \(0.316835\pi\)
\(882\) 0 0
\(883\) 35713.3i 1.36110i 0.732703 + 0.680548i \(0.238258\pi\)
−0.732703 + 0.680548i \(0.761742\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 354.759i − 0.0134292i −0.999977 0.00671458i \(-0.997863\pi\)
0.999977 0.00671458i \(-0.00213733\pi\)
\(888\) 0 0
\(889\) 27261.8 1.02849
\(890\) 0 0
\(891\) 18715.3 0.703688
\(892\) 0 0
\(893\) − 25532.2i − 0.956777i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 4909.79i − 0.182757i
\(898\) 0 0
\(899\) −15798.1 −0.586093
\(900\) 0 0
\(901\) 19536.5 0.722370
\(902\) 0 0
\(903\) 10126.2i 0.373178i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 41414.8i − 1.51616i −0.652162 0.758080i \(-0.726138\pi\)
0.652162 0.758080i \(-0.273862\pi\)
\(908\) 0 0
\(909\) 4550.12 0.166026
\(910\) 0 0
\(911\) 4521.49 0.164439 0.0822194 0.996614i \(-0.473799\pi\)
0.0822194 + 0.996614i \(0.473799\pi\)
\(912\) 0 0
\(913\) 16463.2i 0.596770i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 5016.92i − 0.180669i
\(918\) 0 0
\(919\) 31097.0 1.11621 0.558104 0.829771i \(-0.311529\pi\)
0.558104 + 0.829771i \(0.311529\pi\)
\(920\) 0 0
\(921\) −55147.0 −1.97303
\(922\) 0 0
\(923\) 36318.8i 1.29518i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2722.95i 0.0964761i
\(928\) 0 0
\(929\) −11243.2 −0.397070 −0.198535 0.980094i \(-0.563618\pi\)
−0.198535 + 0.980094i \(0.563618\pi\)
\(930\) 0 0
\(931\) 25310.0 0.890978
\(932\) 0 0
\(933\) 40076.4i 1.40626i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 31275.3i − 1.09042i −0.838300 0.545209i \(-0.816450\pi\)
0.838300 0.545209i \(-0.183550\pi\)
\(938\) 0 0
\(939\) 16915.2 0.587866
\(940\) 0 0
\(941\) −19726.6 −0.683387 −0.341694 0.939811i \(-0.611001\pi\)
−0.341694 + 0.939811i \(0.611001\pi\)
\(942\) 0 0
\(943\) − 7021.48i − 0.242472i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 9073.85i − 0.311363i −0.987807 0.155681i \(-0.950243\pi\)
0.987807 0.155681i \(-0.0497573\pi\)
\(948\) 0 0
\(949\) 12806.9 0.438072
\(950\) 0 0
\(951\) −22988.4 −0.783860
\(952\) 0 0
\(953\) − 20332.8i − 0.691125i −0.938396 0.345563i \(-0.887688\pi\)
0.938396 0.345563i \(-0.112312\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 9046.14i 0.305559i
\(958\) 0 0
\(959\) −20947.9 −0.705364
\(960\) 0 0
\(961\) 18490.8 0.620686
\(962\) 0 0
\(963\) 8097.03i 0.270948i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 10303.5i − 0.342646i −0.985215 0.171323i \(-0.945196\pi\)
0.985215 0.171323i \(-0.0548041\pi\)
\(968\) 0 0
\(969\) 49308.3 1.63469
\(970\) 0 0
\(971\) −937.151 −0.0309728 −0.0154864 0.999880i \(-0.504930\pi\)
−0.0154864 + 0.999880i \(0.504930\pi\)
\(972\) 0 0
\(973\) − 12586.6i − 0.414705i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 23339.0i − 0.764258i −0.924109 0.382129i \(-0.875191\pi\)
0.924109 0.382129i \(-0.124809\pi\)
\(978\) 0 0
\(979\) 17839.2 0.582372
\(980\) 0 0
\(981\) −12417.0 −0.404124
\(982\) 0 0
\(983\) − 26638.6i − 0.864334i −0.901794 0.432167i \(-0.857749\pi\)
0.901794 0.432167i \(-0.142251\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13395.5i 0.431999i
\(988\) 0 0
\(989\) 3225.39 0.103702
\(990\) 0 0
\(991\) −24631.4 −0.789548 −0.394774 0.918778i \(-0.629177\pi\)
−0.394774 + 0.918778i \(0.629177\pi\)
\(992\) 0 0
\(993\) − 3415.15i − 0.109141i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 31438.3i − 0.998656i −0.866413 0.499328i \(-0.833580\pi\)
0.866413 0.499328i \(-0.166420\pi\)
\(998\) 0 0
\(999\) −35998.2 −1.14007
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2300.4.c.d.1749.3 10
5.2 odd 4 2300.4.a.c.1.2 5
5.3 odd 4 460.4.a.b.1.4 5
5.4 even 2 inner 2300.4.c.d.1749.8 10
20.3 even 4 1840.4.a.o.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.4.a.b.1.4 5 5.3 odd 4
1840.4.a.o.1.2 5 20.3 even 4
2300.4.a.c.1.2 5 5.2 odd 4
2300.4.c.d.1749.3 10 1.1 even 1 trivial
2300.4.c.d.1749.8 10 5.4 even 2 inner