Properties

Label 2300.4.c.b
Level $2300$
Weight $4$
Character orbit 2300.c
Analytic conductor $135.704$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,4,Mod(1749,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.1749"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,62,0,-128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(135.704393013\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.96668224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 15x^{4} + 61x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_{2}) q^{3} + (3 \beta_{3} - 18 \beta_{2} + 5 \beta_1) q^{7} + ( - 2 \beta_{5} + 3 \beta_{4} + 10) q^{9} + ( - 11 \beta_{5} - 5 \beta_{4} - 16) q^{11} + (6 \beta_{3} + 9 \beta_{2} + 11 \beta_1) q^{13}+ \cdots + ( - 62 \beta_{5} - 232 \beta_{4} + 104) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 62 q^{9} - 128 q^{11} + 188 q^{19} - 12 q^{21} - 616 q^{29} - 280 q^{31} - 360 q^{39} + 1168 q^{41} - 1390 q^{49} + 668 q^{51} - 288 q^{59} - 2104 q^{61} - 184 q^{69} + 720 q^{71} + 1440 q^{79} - 650 q^{81}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 15x^{4} + 61x^{2} + 36 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 3\nu^{3} - 23\nu ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 9\nu^{3} + 13\nu ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} - 3\nu^{3} + 35\nu ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 7\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{4} + 9\nu^{2} + 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - \beta_{4} - 10 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{3} + \beta_{2} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -7\beta_{5} + 9\beta_{4} + 68 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 41\beta_{3} - 6\beta_{2} + 59\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1749.1
0.841083i
2.59261i
2.75153i
2.75153i
2.59261i
0.841083i
0 6.13366i 0 0 0 19.8565i 0 −10.6218 0
1749.2 0 3.31427i 0 0 0 35.2976i 0 16.0156 0
1749.3 0 1.18060i 0 0 0 9.15411i 0 25.6062 0
1749.4 0 1.18060i 0 0 0 9.15411i 0 25.6062 0
1749.5 0 3.31427i 0 0 0 35.2976i 0 16.0156 0
1749.6 0 6.13366i 0 0 0 19.8565i 0 −10.6218 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1749.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2300.4.c.b 6
5.b even 2 1 inner 2300.4.c.b 6
5.c odd 4 1 92.4.a.a 3
5.c odd 4 1 2300.4.a.b 3
15.e even 4 1 828.4.a.f 3
20.e even 4 1 368.4.a.k 3
40.i odd 4 1 1472.4.a.w 3
40.k even 4 1 1472.4.a.p 3
115.e even 4 1 2116.4.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.4.a.a 3 5.c odd 4 1
368.4.a.k 3 20.e even 4 1
828.4.a.f 3 15.e even 4 1
1472.4.a.p 3 40.k even 4 1
1472.4.a.w 3 40.i odd 4 1
2116.4.a.a 3 115.e even 4 1
2300.4.a.b 3 5.c odd 4 1
2300.4.c.b 6 1.a even 1 1 trivial
2300.4.c.b 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 50T_{3}^{4} + 481T_{3}^{2} + 576 \) acting on \(S_{4}^{\mathrm{new}}(2300, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 50 T^{4} + \cdots + 576 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 1724 T^{4} + \cdots + 41165056 \) Copy content Toggle raw display
$11$ \( (T^{3} + 64 T^{2} + \cdots - 88184)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 5414 T^{4} + \cdots + 11115556 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 2616293310016 \) Copy content Toggle raw display
$19$ \( (T^{3} - 94 T^{2} + \cdots + 184984)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 529)^{3} \) Copy content Toggle raw display
$29$ \( (T^{3} + 308 T^{2} + \cdots + 1008698)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 140 T^{2} + \cdots - 1074768)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 21834910310656 \) Copy content Toggle raw display
$41$ \( (T^{3} - 584 T^{2} + \cdots + 21405186)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 208570901856256 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 671132441938176 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 3992217856 \) Copy content Toggle raw display
$59$ \( (T^{3} + 144 T^{2} + \cdots + 15495744)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 1052 T^{2} + \cdots - 55378432)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 52\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( (T^{3} - 360 T^{2} + \cdots + 7542816)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 11\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( (T^{3} - 720 T^{2} + \cdots + 932658192)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 21\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{3} + 534 T^{2} + \cdots - 77599776)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 45\!\cdots\!56 \) Copy content Toggle raw display
show more
show less