Properties

Label 2300.4.a.c.1.3
Level $2300$
Weight $4$
Character 2300.1
Self dual yes
Analytic conductor $135.704$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,4,Mod(1,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2300.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.704393013\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 80x^{3} + 121x^{2} + 1212x + 1044 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 460)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.04116\) of defining polynomial
Character \(\chi\) \(=\) 2300.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.04116 q^{3} -21.6113 q^{7} -22.8337 q^{9} -30.3495 q^{11} -69.6786 q^{13} +43.4506 q^{17} +14.3892 q^{19} -44.1120 q^{21} +23.0000 q^{23} -101.718 q^{27} -158.105 q^{29} -46.4782 q^{31} -61.9480 q^{33} -39.6849 q^{37} -142.225 q^{39} -201.771 q^{41} -17.8927 q^{43} +0.702668 q^{47} +124.048 q^{49} +88.6894 q^{51} +661.161 q^{53} +29.3705 q^{57} -732.679 q^{59} -875.997 q^{61} +493.465 q^{63} -746.803 q^{67} +46.9466 q^{69} -275.246 q^{71} +499.633 q^{73} +655.892 q^{77} -797.970 q^{79} +408.887 q^{81} +1150.10 q^{83} -322.716 q^{87} +1166.89 q^{89} +1505.85 q^{91} -94.8693 q^{93} -403.209 q^{97} +692.991 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} - 8 q^{7} + 30 q^{9} + 7 q^{11} - 5 q^{13} + 24 q^{17} - 13 q^{19} + 115 q^{23} + 204 q^{27} - 253 q^{29} - 98 q^{31} + 473 q^{33} + 435 q^{37} - 410 q^{39} - 774 q^{41} + 498 q^{43} + 572 q^{47}+ \cdots + 111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.04116 0.392821 0.196410 0.980522i \(-0.437072\pi\)
0.196410 + 0.980522i \(0.437072\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −21.6113 −1.16690 −0.583450 0.812149i \(-0.698298\pi\)
−0.583450 + 0.812149i \(0.698298\pi\)
\(8\) 0 0
\(9\) −22.8337 −0.845692
\(10\) 0 0
\(11\) −30.3495 −0.831884 −0.415942 0.909391i \(-0.636548\pi\)
−0.415942 + 0.909391i \(0.636548\pi\)
\(12\) 0 0
\(13\) −69.6786 −1.48657 −0.743284 0.668976i \(-0.766733\pi\)
−0.743284 + 0.668976i \(0.766733\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 43.4506 0.619901 0.309950 0.950753i \(-0.399688\pi\)
0.309950 + 0.950753i \(0.399688\pi\)
\(18\) 0 0
\(19\) 14.3892 0.173742 0.0868710 0.996220i \(-0.472313\pi\)
0.0868710 + 0.996220i \(0.472313\pi\)
\(20\) 0 0
\(21\) −44.1120 −0.458382
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −101.718 −0.725026
\(28\) 0 0
\(29\) −158.105 −1.01239 −0.506195 0.862419i \(-0.668948\pi\)
−0.506195 + 0.862419i \(0.668948\pi\)
\(30\) 0 0
\(31\) −46.4782 −0.269282 −0.134641 0.990894i \(-0.542988\pi\)
−0.134641 + 0.990894i \(0.542988\pi\)
\(32\) 0 0
\(33\) −61.9480 −0.326781
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −39.6849 −0.176328 −0.0881642 0.996106i \(-0.528100\pi\)
−0.0881642 + 0.996106i \(0.528100\pi\)
\(38\) 0 0
\(39\) −142.225 −0.583954
\(40\) 0 0
\(41\) −201.771 −0.768571 −0.384285 0.923214i \(-0.625552\pi\)
−0.384285 + 0.923214i \(0.625552\pi\)
\(42\) 0 0
\(43\) −17.8927 −0.0634562 −0.0317281 0.999497i \(-0.510101\pi\)
−0.0317281 + 0.999497i \(0.510101\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.702668 0.00218074 0.00109037 0.999999i \(-0.499653\pi\)
0.00109037 + 0.999999i \(0.499653\pi\)
\(48\) 0 0
\(49\) 124.048 0.361655
\(50\) 0 0
\(51\) 88.6894 0.243510
\(52\) 0 0
\(53\) 661.161 1.71354 0.856769 0.515701i \(-0.172468\pi\)
0.856769 + 0.515701i \(0.172468\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 29.3705 0.0682495
\(58\) 0 0
\(59\) −732.679 −1.61672 −0.808361 0.588686i \(-0.799645\pi\)
−0.808361 + 0.588686i \(0.799645\pi\)
\(60\) 0 0
\(61\) −875.997 −1.83869 −0.919344 0.393454i \(-0.871280\pi\)
−0.919344 + 0.393454i \(0.871280\pi\)
\(62\) 0 0
\(63\) 493.465 0.986838
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −746.803 −1.36174 −0.680870 0.732404i \(-0.738398\pi\)
−0.680870 + 0.732404i \(0.738398\pi\)
\(68\) 0 0
\(69\) 46.9466 0.0819087
\(70\) 0 0
\(71\) −275.246 −0.460079 −0.230040 0.973181i \(-0.573886\pi\)
−0.230040 + 0.973181i \(0.573886\pi\)
\(72\) 0 0
\(73\) 499.633 0.801063 0.400532 0.916283i \(-0.368825\pi\)
0.400532 + 0.916283i \(0.368825\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 655.892 0.970725
\(78\) 0 0
\(79\) −797.970 −1.13644 −0.568219 0.822877i \(-0.692367\pi\)
−0.568219 + 0.822877i \(0.692367\pi\)
\(80\) 0 0
\(81\) 408.887 0.560887
\(82\) 0 0
\(83\) 1150.10 1.52097 0.760483 0.649358i \(-0.224962\pi\)
0.760483 + 0.649358i \(0.224962\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −322.716 −0.397687
\(88\) 0 0
\(89\) 1166.89 1.38978 0.694890 0.719116i \(-0.255453\pi\)
0.694890 + 0.719116i \(0.255453\pi\)
\(90\) 0 0
\(91\) 1505.85 1.73468
\(92\) 0 0
\(93\) −94.8693 −0.105779
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −403.209 −0.422058 −0.211029 0.977480i \(-0.567682\pi\)
−0.211029 + 0.977480i \(0.567682\pi\)
\(98\) 0 0
\(99\) 692.991 0.703517
\(100\) 0 0
\(101\) 484.319 0.477144 0.238572 0.971125i \(-0.423321\pi\)
0.238572 + 0.971125i \(0.423321\pi\)
\(102\) 0 0
\(103\) 2064.69 1.97514 0.987572 0.157167i \(-0.0502361\pi\)
0.987572 + 0.157167i \(0.0502361\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1436.43 1.29780 0.648902 0.760872i \(-0.275228\pi\)
0.648902 + 0.760872i \(0.275228\pi\)
\(108\) 0 0
\(109\) 1870.62 1.64379 0.821895 0.569639i \(-0.192917\pi\)
0.821895 + 0.569639i \(0.192917\pi\)
\(110\) 0 0
\(111\) −81.0030 −0.0692654
\(112\) 0 0
\(113\) −1606.67 −1.33755 −0.668775 0.743465i \(-0.733181\pi\)
−0.668775 + 0.743465i \(0.733181\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1591.02 1.25718
\(118\) 0 0
\(119\) −939.023 −0.723362
\(120\) 0 0
\(121\) −409.908 −0.307970
\(122\) 0 0
\(123\) −411.847 −0.301910
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2031.66 1.41953 0.709766 0.704438i \(-0.248801\pi\)
0.709766 + 0.704438i \(0.248801\pi\)
\(128\) 0 0
\(129\) −36.5219 −0.0249269
\(130\) 0 0
\(131\) −434.691 −0.289917 −0.144958 0.989438i \(-0.546305\pi\)
−0.144958 + 0.989438i \(0.546305\pi\)
\(132\) 0 0
\(133\) −310.968 −0.202740
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −939.729 −0.586033 −0.293016 0.956107i \(-0.594659\pi\)
−0.293016 + 0.956107i \(0.594659\pi\)
\(138\) 0 0
\(139\) −124.609 −0.0760376 −0.0380188 0.999277i \(-0.512105\pi\)
−0.0380188 + 0.999277i \(0.512105\pi\)
\(140\) 0 0
\(141\) 1.43426 0.000856639 0
\(142\) 0 0
\(143\) 2114.71 1.23665
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 253.201 0.142066
\(148\) 0 0
\(149\) 1375.14 0.756079 0.378039 0.925789i \(-0.376598\pi\)
0.378039 + 0.925789i \(0.376598\pi\)
\(150\) 0 0
\(151\) −1196.51 −0.644838 −0.322419 0.946597i \(-0.604496\pi\)
−0.322419 + 0.946597i \(0.604496\pi\)
\(152\) 0 0
\(153\) −992.137 −0.524245
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 212.340 0.107940 0.0539699 0.998543i \(-0.482812\pi\)
0.0539699 + 0.998543i \(0.482812\pi\)
\(158\) 0 0
\(159\) 1349.53 0.673113
\(160\) 0 0
\(161\) −497.060 −0.243315
\(162\) 0 0
\(163\) −1390.16 −0.668013 −0.334006 0.942571i \(-0.608401\pi\)
−0.334006 + 0.942571i \(0.608401\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −362.349 −0.167901 −0.0839503 0.996470i \(-0.526754\pi\)
−0.0839503 + 0.996470i \(0.526754\pi\)
\(168\) 0 0
\(169\) 2658.11 1.20988
\(170\) 0 0
\(171\) −328.557 −0.146932
\(172\) 0 0
\(173\) −986.596 −0.433581 −0.216790 0.976218i \(-0.569559\pi\)
−0.216790 + 0.976218i \(0.569559\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1495.51 −0.635082
\(178\) 0 0
\(179\) 3977.44 1.66083 0.830413 0.557149i \(-0.188105\pi\)
0.830413 + 0.557149i \(0.188105\pi\)
\(180\) 0 0
\(181\) 2512.70 1.03186 0.515932 0.856630i \(-0.327446\pi\)
0.515932 + 0.856630i \(0.327446\pi\)
\(182\) 0 0
\(183\) −1788.05 −0.722275
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1318.70 −0.515685
\(188\) 0 0
\(189\) 2198.26 0.846032
\(190\) 0 0
\(191\) 1977.49 0.749142 0.374571 0.927198i \(-0.377790\pi\)
0.374571 + 0.927198i \(0.377790\pi\)
\(192\) 0 0
\(193\) 1241.30 0.462957 0.231478 0.972840i \(-0.425644\pi\)
0.231478 + 0.972840i \(0.425644\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1969.91 −0.712436 −0.356218 0.934403i \(-0.615934\pi\)
−0.356218 + 0.934403i \(0.615934\pi\)
\(198\) 0 0
\(199\) −4053.09 −1.44380 −0.721899 0.691998i \(-0.756731\pi\)
−0.721899 + 0.691998i \(0.756731\pi\)
\(200\) 0 0
\(201\) −1524.34 −0.534919
\(202\) 0 0
\(203\) 3416.85 1.18136
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −525.175 −0.176339
\(208\) 0 0
\(209\) −436.704 −0.144533
\(210\) 0 0
\(211\) 374.110 0.122061 0.0610303 0.998136i \(-0.480561\pi\)
0.0610303 + 0.998136i \(0.480561\pi\)
\(212\) 0 0
\(213\) −561.819 −0.180729
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1004.45 0.314225
\(218\) 0 0
\(219\) 1019.83 0.314674
\(220\) 0 0
\(221\) −3027.58 −0.921524
\(222\) 0 0
\(223\) −3226.90 −0.969010 −0.484505 0.874788i \(-0.661000\pi\)
−0.484505 + 0.874788i \(0.661000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3020.61 −0.883194 −0.441597 0.897213i \(-0.645588\pi\)
−0.441597 + 0.897213i \(0.645588\pi\)
\(228\) 0 0
\(229\) 934.761 0.269741 0.134871 0.990863i \(-0.456938\pi\)
0.134871 + 0.990863i \(0.456938\pi\)
\(230\) 0 0
\(231\) 1338.78 0.381321
\(232\) 0 0
\(233\) 3916.88 1.10130 0.550651 0.834736i \(-0.314380\pi\)
0.550651 + 0.834736i \(0.314380\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1628.78 −0.446416
\(238\) 0 0
\(239\) 3200.06 0.866086 0.433043 0.901373i \(-0.357440\pi\)
0.433043 + 0.901373i \(0.357440\pi\)
\(240\) 0 0
\(241\) −3774.24 −1.00880 −0.504399 0.863471i \(-0.668286\pi\)
−0.504399 + 0.863471i \(0.668286\pi\)
\(242\) 0 0
\(243\) 3581.00 0.945354
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1002.62 −0.258279
\(248\) 0 0
\(249\) 2347.54 0.597467
\(250\) 0 0
\(251\) 3342.01 0.840420 0.420210 0.907427i \(-0.361956\pi\)
0.420210 + 0.907427i \(0.361956\pi\)
\(252\) 0 0
\(253\) −698.039 −0.173460
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2899.20 0.703685 0.351842 0.936059i \(-0.385555\pi\)
0.351842 + 0.936059i \(0.385555\pi\)
\(258\) 0 0
\(259\) 857.641 0.205758
\(260\) 0 0
\(261\) 3610.11 0.856170
\(262\) 0 0
\(263\) 6001.83 1.40718 0.703591 0.710605i \(-0.251579\pi\)
0.703591 + 0.710605i \(0.251579\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2381.81 0.545934
\(268\) 0 0
\(269\) 8308.29 1.88314 0.941571 0.336813i \(-0.109349\pi\)
0.941571 + 0.336813i \(0.109349\pi\)
\(270\) 0 0
\(271\) −2395.28 −0.536911 −0.268456 0.963292i \(-0.586513\pi\)
−0.268456 + 0.963292i \(0.586513\pi\)
\(272\) 0 0
\(273\) 3073.66 0.681416
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7466.49 −1.61956 −0.809780 0.586733i \(-0.800414\pi\)
−0.809780 + 0.586733i \(0.800414\pi\)
\(278\) 0 0
\(279\) 1061.27 0.227729
\(280\) 0 0
\(281\) −5570.87 −1.18267 −0.591335 0.806426i \(-0.701399\pi\)
−0.591335 + 0.806426i \(0.701399\pi\)
\(282\) 0 0
\(283\) 5273.48 1.10769 0.553845 0.832620i \(-0.313160\pi\)
0.553845 + 0.832620i \(0.313160\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4360.54 0.896845
\(288\) 0 0
\(289\) −3025.05 −0.615723
\(290\) 0 0
\(291\) −823.012 −0.165793
\(292\) 0 0
\(293\) 511.514 0.101990 0.0509948 0.998699i \(-0.483761\pi\)
0.0509948 + 0.998699i \(0.483761\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3087.10 0.603137
\(298\) 0 0
\(299\) −1602.61 −0.309971
\(300\) 0 0
\(301\) 386.685 0.0740471
\(302\) 0 0
\(303\) 988.570 0.187432
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4157.46 −0.772894 −0.386447 0.922312i \(-0.626298\pi\)
−0.386447 + 0.922312i \(0.626298\pi\)
\(308\) 0 0
\(309\) 4214.35 0.775877
\(310\) 0 0
\(311\) −3408.45 −0.621465 −0.310733 0.950497i \(-0.600574\pi\)
−0.310733 + 0.950497i \(0.600574\pi\)
\(312\) 0 0
\(313\) −4516.35 −0.815589 −0.407794 0.913074i \(-0.633702\pi\)
−0.407794 + 0.913074i \(0.633702\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2693.62 −0.477251 −0.238626 0.971112i \(-0.576697\pi\)
−0.238626 + 0.971112i \(0.576697\pi\)
\(318\) 0 0
\(319\) 4798.40 0.842190
\(320\) 0 0
\(321\) 2931.98 0.509804
\(322\) 0 0
\(323\) 625.217 0.107703
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3818.23 0.645715
\(328\) 0 0
\(329\) −15.1856 −0.00254470
\(330\) 0 0
\(331\) −11024.4 −1.83068 −0.915338 0.402687i \(-0.868076\pi\)
−0.915338 + 0.402687i \(0.868076\pi\)
\(332\) 0 0
\(333\) 906.152 0.149120
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5218.80 −0.843579 −0.421790 0.906694i \(-0.638598\pi\)
−0.421790 + 0.906694i \(0.638598\pi\)
\(338\) 0 0
\(339\) −3279.47 −0.525417
\(340\) 0 0
\(341\) 1410.59 0.224011
\(342\) 0 0
\(343\) 4731.84 0.744885
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −93.8512 −0.0145193 −0.00725965 0.999974i \(-0.502311\pi\)
−0.00725965 + 0.999974i \(0.502311\pi\)
\(348\) 0 0
\(349\) 4540.27 0.696376 0.348188 0.937425i \(-0.386797\pi\)
0.348188 + 0.937425i \(0.386797\pi\)
\(350\) 0 0
\(351\) 7087.59 1.07780
\(352\) 0 0
\(353\) −4287.12 −0.646403 −0.323202 0.946330i \(-0.604759\pi\)
−0.323202 + 0.946330i \(0.604759\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1916.69 −0.284151
\(358\) 0 0
\(359\) −176.418 −0.0259359 −0.0129680 0.999916i \(-0.504128\pi\)
−0.0129680 + 0.999916i \(0.504128\pi\)
\(360\) 0 0
\(361\) −6651.95 −0.969814
\(362\) 0 0
\(363\) −836.686 −0.120977
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7745.87 1.10172 0.550860 0.834598i \(-0.314300\pi\)
0.550860 + 0.834598i \(0.314300\pi\)
\(368\) 0 0
\(369\) 4607.18 0.649974
\(370\) 0 0
\(371\) −14288.5 −1.99953
\(372\) 0 0
\(373\) 8268.02 1.14773 0.573863 0.818951i \(-0.305444\pi\)
0.573863 + 0.818951i \(0.305444\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11016.5 1.50499
\(378\) 0 0
\(379\) 7229.18 0.979783 0.489892 0.871783i \(-0.337036\pi\)
0.489892 + 0.871783i \(0.337036\pi\)
\(380\) 0 0
\(381\) 4146.93 0.557621
\(382\) 0 0
\(383\) 519.390 0.0692940 0.0346470 0.999400i \(-0.488969\pi\)
0.0346470 + 0.999400i \(0.488969\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 408.557 0.0536644
\(388\) 0 0
\(389\) −10746.4 −1.40068 −0.700341 0.713809i \(-0.746969\pi\)
−0.700341 + 0.713809i \(0.746969\pi\)
\(390\) 0 0
\(391\) 999.363 0.129258
\(392\) 0 0
\(393\) −887.271 −0.113885
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11738.8 1.48401 0.742004 0.670395i \(-0.233875\pi\)
0.742004 + 0.670395i \(0.233875\pi\)
\(398\) 0 0
\(399\) −634.734 −0.0796403
\(400\) 0 0
\(401\) −94.4786 −0.0117657 −0.00588284 0.999983i \(-0.501873\pi\)
−0.00588284 + 0.999983i \(0.501873\pi\)
\(402\) 0 0
\(403\) 3238.54 0.400306
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1204.42 0.146685
\(408\) 0 0
\(409\) −13712.5 −1.65780 −0.828901 0.559396i \(-0.811033\pi\)
−0.828901 + 0.559396i \(0.811033\pi\)
\(410\) 0 0
\(411\) −1918.13 −0.230206
\(412\) 0 0
\(413\) 15834.1 1.88655
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −254.347 −0.0298691
\(418\) 0 0
\(419\) 4392.60 0.512154 0.256077 0.966656i \(-0.417570\pi\)
0.256077 + 0.966656i \(0.417570\pi\)
\(420\) 0 0
\(421\) 112.287 0.0129989 0.00649943 0.999979i \(-0.497931\pi\)
0.00649943 + 0.999979i \(0.497931\pi\)
\(422\) 0 0
\(423\) −16.0445 −0.00184423
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18931.4 2.14556
\(428\) 0 0
\(429\) 4316.46 0.485782
\(430\) 0 0
\(431\) −7035.30 −0.786261 −0.393131 0.919483i \(-0.628608\pi\)
−0.393131 + 0.919483i \(0.628608\pi\)
\(432\) 0 0
\(433\) −12046.0 −1.33693 −0.668467 0.743742i \(-0.733049\pi\)
−0.668467 + 0.743742i \(0.733049\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 330.951 0.0362277
\(438\) 0 0
\(439\) −2089.02 −0.227115 −0.113557 0.993531i \(-0.536225\pi\)
−0.113557 + 0.993531i \(0.536225\pi\)
\(440\) 0 0
\(441\) −2832.47 −0.305849
\(442\) 0 0
\(443\) 7436.42 0.797551 0.398776 0.917049i \(-0.369435\pi\)
0.398776 + 0.917049i \(0.369435\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2806.87 0.297003
\(448\) 0 0
\(449\) 1796.33 0.188806 0.0944032 0.995534i \(-0.469906\pi\)
0.0944032 + 0.995534i \(0.469906\pi\)
\(450\) 0 0
\(451\) 6123.66 0.639361
\(452\) 0 0
\(453\) −2442.26 −0.253306
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3232.73 0.330899 0.165450 0.986218i \(-0.447093\pi\)
0.165450 + 0.986218i \(0.447093\pi\)
\(458\) 0 0
\(459\) −4419.72 −0.449444
\(460\) 0 0
\(461\) −10750.2 −1.08609 −0.543044 0.839704i \(-0.682728\pi\)
−0.543044 + 0.839704i \(0.682728\pi\)
\(462\) 0 0
\(463\) −6598.81 −0.662360 −0.331180 0.943568i \(-0.607447\pi\)
−0.331180 + 0.943568i \(0.607447\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8153.38 −0.807909 −0.403954 0.914779i \(-0.632365\pi\)
−0.403954 + 0.914779i \(0.632365\pi\)
\(468\) 0 0
\(469\) 16139.4 1.58901
\(470\) 0 0
\(471\) 433.418 0.0424010
\(472\) 0 0
\(473\) 543.036 0.0527882
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15096.8 −1.44913
\(478\) 0 0
\(479\) 15056.7 1.43624 0.718120 0.695919i \(-0.245003\pi\)
0.718120 + 0.695919i \(0.245003\pi\)
\(480\) 0 0
\(481\) 2765.19 0.262124
\(482\) 0 0
\(483\) −1014.58 −0.0955793
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2098.90 −0.195298 −0.0976491 0.995221i \(-0.531132\pi\)
−0.0976491 + 0.995221i \(0.531132\pi\)
\(488\) 0 0
\(489\) −2837.54 −0.262409
\(490\) 0 0
\(491\) −2245.71 −0.206410 −0.103205 0.994660i \(-0.532910\pi\)
−0.103205 + 0.994660i \(0.532910\pi\)
\(492\) 0 0
\(493\) −6869.74 −0.627581
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5948.41 0.536866
\(498\) 0 0
\(499\) 3216.32 0.288542 0.144271 0.989538i \(-0.453916\pi\)
0.144271 + 0.989538i \(0.453916\pi\)
\(500\) 0 0
\(501\) −739.611 −0.0659548
\(502\) 0 0
\(503\) 15459.5 1.37039 0.685193 0.728361i \(-0.259718\pi\)
0.685193 + 0.728361i \(0.259718\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5425.62 0.475267
\(508\) 0 0
\(509\) 12581.8 1.09564 0.547818 0.836597i \(-0.315459\pi\)
0.547818 + 0.836597i \(0.315459\pi\)
\(510\) 0 0
\(511\) −10797.7 −0.934761
\(512\) 0 0
\(513\) −1463.64 −0.125967
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −21.3256 −0.00181412
\(518\) 0 0
\(519\) −2013.80 −0.170320
\(520\) 0 0
\(521\) 2681.76 0.225509 0.112754 0.993623i \(-0.464033\pi\)
0.112754 + 0.993623i \(0.464033\pi\)
\(522\) 0 0
\(523\) 9009.09 0.753232 0.376616 0.926370i \(-0.377088\pi\)
0.376616 + 0.926370i \(0.377088\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2019.50 −0.166928
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 16729.8 1.36725
\(532\) 0 0
\(533\) 14059.2 1.14253
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8118.57 0.652406
\(538\) 0 0
\(539\) −3764.78 −0.300855
\(540\) 0 0
\(541\) 22789.6 1.81109 0.905546 0.424249i \(-0.139462\pi\)
0.905546 + 0.424249i \(0.139462\pi\)
\(542\) 0 0
\(543\) 5128.80 0.405337
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −20709.0 −1.61874 −0.809371 0.587297i \(-0.800192\pi\)
−0.809371 + 0.587297i \(0.800192\pi\)
\(548\) 0 0
\(549\) 20002.3 1.55496
\(550\) 0 0
\(551\) −2274.99 −0.175895
\(552\) 0 0
\(553\) 17245.2 1.32611
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −586.443 −0.0446111 −0.0223055 0.999751i \(-0.507101\pi\)
−0.0223055 + 0.999751i \(0.507101\pi\)
\(558\) 0 0
\(559\) 1246.74 0.0943320
\(560\) 0 0
\(561\) −2691.68 −0.202572
\(562\) 0 0
\(563\) 4988.10 0.373399 0.186699 0.982417i \(-0.440221\pi\)
0.186699 + 0.982417i \(0.440221\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −8836.57 −0.654499
\(568\) 0 0
\(569\) 5548.19 0.408773 0.204387 0.978890i \(-0.434480\pi\)
0.204387 + 0.978890i \(0.434480\pi\)
\(570\) 0 0
\(571\) −2684.93 −0.196779 −0.0983893 0.995148i \(-0.531369\pi\)
−0.0983893 + 0.995148i \(0.531369\pi\)
\(572\) 0 0
\(573\) 4036.36 0.294278
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1462.86 −0.105546 −0.0527728 0.998607i \(-0.516806\pi\)
−0.0527728 + 0.998607i \(0.516806\pi\)
\(578\) 0 0
\(579\) 2533.68 0.181859
\(580\) 0 0
\(581\) −24855.2 −1.77481
\(582\) 0 0
\(583\) −20065.9 −1.42546
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11020.7 0.774912 0.387456 0.921888i \(-0.373354\pi\)
0.387456 + 0.921888i \(0.373354\pi\)
\(588\) 0 0
\(589\) −668.782 −0.0467856
\(590\) 0 0
\(591\) −4020.88 −0.279860
\(592\) 0 0
\(593\) −7341.16 −0.508373 −0.254186 0.967155i \(-0.581808\pi\)
−0.254186 + 0.967155i \(0.581808\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8272.98 −0.567154
\(598\) 0 0
\(599\) −12642.5 −0.862366 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(600\) 0 0
\(601\) 7426.60 0.504056 0.252028 0.967720i \(-0.418903\pi\)
0.252028 + 0.967720i \(0.418903\pi\)
\(602\) 0 0
\(603\) 17052.3 1.15161
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7506.30 0.501929 0.250965 0.967996i \(-0.419252\pi\)
0.250965 + 0.967996i \(0.419252\pi\)
\(608\) 0 0
\(609\) 6974.31 0.464061
\(610\) 0 0
\(611\) −48.9610 −0.00324182
\(612\) 0 0
\(613\) −23467.7 −1.54625 −0.773124 0.634254i \(-0.781307\pi\)
−0.773124 + 0.634254i \(0.781307\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1436.56 −0.0937337 −0.0468669 0.998901i \(-0.514924\pi\)
−0.0468669 + 0.998901i \(0.514924\pi\)
\(618\) 0 0
\(619\) 12664.4 0.822332 0.411166 0.911561i \(-0.365122\pi\)
0.411166 + 0.911561i \(0.365122\pi\)
\(620\) 0 0
\(621\) −2339.52 −0.151178
\(622\) 0 0
\(623\) −25218.1 −1.62173
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −891.380 −0.0567756
\(628\) 0 0
\(629\) −1724.33 −0.109306
\(630\) 0 0
\(631\) 5383.68 0.339653 0.169826 0.985474i \(-0.445679\pi\)
0.169826 + 0.985474i \(0.445679\pi\)
\(632\) 0 0
\(633\) 763.616 0.0479479
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8643.47 −0.537625
\(638\) 0 0
\(639\) 6284.87 0.389085
\(640\) 0 0
\(641\) 31245.1 1.92529 0.962643 0.270775i \(-0.0872799\pi\)
0.962643 + 0.270775i \(0.0872799\pi\)
\(642\) 0 0
\(643\) −22381.8 −1.37271 −0.686354 0.727268i \(-0.740790\pi\)
−0.686354 + 0.727268i \(0.740790\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13062.8 −0.793741 −0.396870 0.917875i \(-0.629904\pi\)
−0.396870 + 0.917875i \(0.629904\pi\)
\(648\) 0 0
\(649\) 22236.4 1.34493
\(650\) 0 0
\(651\) 2050.25 0.123434
\(652\) 0 0
\(653\) 17486.1 1.04791 0.523955 0.851746i \(-0.324456\pi\)
0.523955 + 0.851746i \(0.324456\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −11408.5 −0.677453
\(658\) 0 0
\(659\) −29707.1 −1.75603 −0.878016 0.478631i \(-0.841133\pi\)
−0.878016 + 0.478631i \(0.841133\pi\)
\(660\) 0 0
\(661\) −9905.74 −0.582888 −0.291444 0.956588i \(-0.594136\pi\)
−0.291444 + 0.956588i \(0.594136\pi\)
\(662\) 0 0
\(663\) −6179.76 −0.361994
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3636.41 −0.211098
\(668\) 0 0
\(669\) −6586.61 −0.380647
\(670\) 0 0
\(671\) 26586.1 1.52957
\(672\) 0 0
\(673\) 7803.48 0.446957 0.223478 0.974709i \(-0.428259\pi\)
0.223478 + 0.974709i \(0.428259\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −29359.1 −1.66671 −0.833354 0.552740i \(-0.813582\pi\)
−0.833354 + 0.552740i \(0.813582\pi\)
\(678\) 0 0
\(679\) 8713.86 0.492500
\(680\) 0 0
\(681\) −6165.54 −0.346937
\(682\) 0 0
\(683\) 26055.8 1.45973 0.729866 0.683591i \(-0.239583\pi\)
0.729866 + 0.683591i \(0.239583\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1907.99 0.105960
\(688\) 0 0
\(689\) −46068.8 −2.54729
\(690\) 0 0
\(691\) 15166.4 0.834959 0.417480 0.908686i \(-0.362914\pi\)
0.417480 + 0.908686i \(0.362914\pi\)
\(692\) 0 0
\(693\) −14976.4 −0.820934
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −8767.08 −0.476437
\(698\) 0 0
\(699\) 7994.95 0.432614
\(700\) 0 0
\(701\) −26527.8 −1.42930 −0.714650 0.699482i \(-0.753414\pi\)
−0.714650 + 0.699482i \(0.753414\pi\)
\(702\) 0 0
\(703\) −571.032 −0.0306357
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10466.7 −0.556779
\(708\) 0 0
\(709\) 21268.1 1.12657 0.563287 0.826261i \(-0.309536\pi\)
0.563287 + 0.826261i \(0.309536\pi\)
\(710\) 0 0
\(711\) 18220.6 0.961077
\(712\) 0 0
\(713\) −1069.00 −0.0561491
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6531.82 0.340216
\(718\) 0 0
\(719\) −27640.4 −1.43368 −0.716838 0.697240i \(-0.754411\pi\)
−0.716838 + 0.697240i \(0.754411\pi\)
\(720\) 0 0
\(721\) −44620.6 −2.30480
\(722\) 0 0
\(723\) −7703.81 −0.396276
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10860.2 0.554036 0.277018 0.960865i \(-0.410654\pi\)
0.277018 + 0.960865i \(0.410654\pi\)
\(728\) 0 0
\(729\) −3730.57 −0.189533
\(730\) 0 0
\(731\) −777.450 −0.0393366
\(732\) 0 0
\(733\) 2575.74 0.129791 0.0648956 0.997892i \(-0.479329\pi\)
0.0648956 + 0.997892i \(0.479329\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22665.1 1.13281
\(738\) 0 0
\(739\) −25649.2 −1.27675 −0.638377 0.769724i \(-0.720394\pi\)
−0.638377 + 0.769724i \(0.720394\pi\)
\(740\) 0 0
\(741\) −2046.50 −0.101457
\(742\) 0 0
\(743\) −3767.84 −0.186041 −0.0930207 0.995664i \(-0.529652\pi\)
−0.0930207 + 0.995664i \(0.529652\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −26261.1 −1.28627
\(748\) 0 0
\(749\) −31043.1 −1.51441
\(750\) 0 0
\(751\) 16030.6 0.778913 0.389456 0.921045i \(-0.372663\pi\)
0.389456 + 0.921045i \(0.372663\pi\)
\(752\) 0 0
\(753\) 6821.55 0.330134
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3408.80 0.163666 0.0818329 0.996646i \(-0.473923\pi\)
0.0818329 + 0.996646i \(0.473923\pi\)
\(758\) 0 0
\(759\) −1424.81 −0.0681385
\(760\) 0 0
\(761\) 28208.1 1.34368 0.671841 0.740696i \(-0.265504\pi\)
0.671841 + 0.740696i \(0.265504\pi\)
\(762\) 0 0
\(763\) −40426.6 −1.91814
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 51052.1 2.40337
\(768\) 0 0
\(769\) 26349.3 1.23560 0.617802 0.786334i \(-0.288023\pi\)
0.617802 + 0.786334i \(0.288023\pi\)
\(770\) 0 0
\(771\) 5917.71 0.276422
\(772\) 0 0
\(773\) −29491.9 −1.37225 −0.686126 0.727482i \(-0.740690\pi\)
−0.686126 + 0.727482i \(0.740690\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1750.58 0.0808258
\(778\) 0 0
\(779\) −2903.32 −0.133533
\(780\) 0 0
\(781\) 8353.56 0.382732
\(782\) 0 0
\(783\) 16082.1 0.734009
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −18485.5 −0.837276 −0.418638 0.908153i \(-0.637492\pi\)
−0.418638 + 0.908153i \(0.637492\pi\)
\(788\) 0 0
\(789\) 12250.7 0.552770
\(790\) 0 0
\(791\) 34722.3 1.56079
\(792\) 0 0
\(793\) 61038.3 2.73333
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −36684.3 −1.63039 −0.815197 0.579184i \(-0.803371\pi\)
−0.815197 + 0.579184i \(0.803371\pi\)
\(798\) 0 0
\(799\) 30.5313 0.00135184
\(800\) 0 0
\(801\) −26644.5 −1.17533
\(802\) 0 0
\(803\) −15163.6 −0.666391
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 16958.5 0.739737
\(808\) 0 0
\(809\) 216.567 0.00941173 0.00470586 0.999989i \(-0.498502\pi\)
0.00470586 + 0.999989i \(0.498502\pi\)
\(810\) 0 0
\(811\) 25897.5 1.12131 0.560657 0.828048i \(-0.310549\pi\)
0.560657 + 0.828048i \(0.310549\pi\)
\(812\) 0 0
\(813\) −4889.14 −0.210910
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −257.462 −0.0110250
\(818\) 0 0
\(819\) −34384.0 −1.46700
\(820\) 0 0
\(821\) 12735.6 0.541384 0.270692 0.962666i \(-0.412748\pi\)
0.270692 + 0.962666i \(0.412748\pi\)
\(822\) 0 0
\(823\) −25798.2 −1.09267 −0.546336 0.837566i \(-0.683978\pi\)
−0.546336 + 0.837566i \(0.683978\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21295.2 −0.895413 −0.447706 0.894181i \(-0.647759\pi\)
−0.447706 + 0.894181i \(0.647759\pi\)
\(828\) 0 0
\(829\) −43456.4 −1.82063 −0.910315 0.413915i \(-0.864161\pi\)
−0.910315 + 0.413915i \(0.864161\pi\)
\(830\) 0 0
\(831\) −15240.3 −0.636197
\(832\) 0 0
\(833\) 5389.94 0.224190
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4727.68 0.195236
\(838\) 0 0
\(839\) 14245.5 0.586184 0.293092 0.956084i \(-0.405316\pi\)
0.293092 + 0.956084i \(0.405316\pi\)
\(840\) 0 0
\(841\) 608.090 0.0249330
\(842\) 0 0
\(843\) −11371.0 −0.464577
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8858.64 0.359370
\(848\) 0 0
\(849\) 10764.0 0.435123
\(850\) 0 0
\(851\) −912.752 −0.0367670
\(852\) 0 0
\(853\) −1967.69 −0.0789830 −0.0394915 0.999220i \(-0.512574\pi\)
−0.0394915 + 0.999220i \(0.512574\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32176.3 1.28252 0.641262 0.767322i \(-0.278411\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(858\) 0 0
\(859\) −1273.26 −0.0505741 −0.0252871 0.999680i \(-0.508050\pi\)
−0.0252871 + 0.999680i \(0.508050\pi\)
\(860\) 0 0
\(861\) 8900.54 0.352299
\(862\) 0 0
\(863\) −69.6881 −0.00274880 −0.00137440 0.999999i \(-0.500437\pi\)
−0.00137440 + 0.999999i \(0.500437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −6174.59 −0.241869
\(868\) 0 0
\(869\) 24218.0 0.945384
\(870\) 0 0
\(871\) 52036.3 2.02432
\(872\) 0 0
\(873\) 9206.75 0.356931
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20284.8 0.781038 0.390519 0.920595i \(-0.372296\pi\)
0.390519 + 0.920595i \(0.372296\pi\)
\(878\) 0 0
\(879\) 1044.08 0.0400636
\(880\) 0 0
\(881\) −29637.5 −1.13339 −0.566693 0.823929i \(-0.691778\pi\)
−0.566693 + 0.823929i \(0.691778\pi\)
\(882\) 0 0
\(883\) 16749.3 0.638344 0.319172 0.947697i \(-0.396595\pi\)
0.319172 + 0.947697i \(0.396595\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22904.8 0.867042 0.433521 0.901143i \(-0.357271\pi\)
0.433521 + 0.901143i \(0.357271\pi\)
\(888\) 0 0
\(889\) −43906.7 −1.65645
\(890\) 0 0
\(891\) −12409.5 −0.466593
\(892\) 0 0
\(893\) 10.1108 0.000378886 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −3271.17 −0.121763
\(898\) 0 0
\(899\) 7348.42 0.272618
\(900\) 0 0
\(901\) 28727.8 1.06222
\(902\) 0 0
\(903\) 789.285 0.0290872
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 20869.7 0.764020 0.382010 0.924158i \(-0.375232\pi\)
0.382010 + 0.924158i \(0.375232\pi\)
\(908\) 0 0
\(909\) −11058.8 −0.403517
\(910\) 0 0
\(911\) −42361.0 −1.54060 −0.770298 0.637684i \(-0.779892\pi\)
−0.770298 + 0.637684i \(0.779892\pi\)
\(912\) 0 0
\(913\) −34905.0 −1.26527
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9394.22 0.338304
\(918\) 0 0
\(919\) 14136.3 0.507413 0.253707 0.967281i \(-0.418350\pi\)
0.253707 + 0.967281i \(0.418350\pi\)
\(920\) 0 0
\(921\) −8486.01 −0.303609
\(922\) 0 0
\(923\) 19178.7 0.683939
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −47144.5 −1.67036
\(928\) 0 0
\(929\) −7897.49 −0.278911 −0.139455 0.990228i \(-0.544535\pi\)
−0.139455 + 0.990228i \(0.544535\pi\)
\(930\) 0 0
\(931\) 1784.94 0.0628347
\(932\) 0 0
\(933\) −6957.19 −0.244124
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −21499.1 −0.749567 −0.374783 0.927112i \(-0.622283\pi\)
−0.374783 + 0.927112i \(0.622283\pi\)
\(938\) 0 0
\(939\) −9218.58 −0.320380
\(940\) 0 0
\(941\) 30258.7 1.04825 0.524125 0.851641i \(-0.324392\pi\)
0.524125 + 0.851641i \(0.324392\pi\)
\(942\) 0 0
\(943\) −4640.74 −0.160258
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12769.1 0.438163 0.219082 0.975707i \(-0.429694\pi\)
0.219082 + 0.975707i \(0.429694\pi\)
\(948\) 0 0
\(949\) −34813.8 −1.19083
\(950\) 0 0
\(951\) −5498.09 −0.187474
\(952\) 0 0
\(953\) −28174.8 −0.957683 −0.478841 0.877901i \(-0.658943\pi\)
−0.478841 + 0.877901i \(0.658943\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 9794.28 0.330830
\(958\) 0 0
\(959\) 20308.8 0.683841
\(960\) 0 0
\(961\) −27630.8 −0.927487
\(962\) 0 0
\(963\) −32799.0 −1.09754
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2696.72 0.0896800 0.0448400 0.998994i \(-0.485722\pi\)
0.0448400 + 0.998994i \(0.485722\pi\)
\(968\) 0 0
\(969\) 1276.17 0.0423079
\(970\) 0 0
\(971\) −29192.7 −0.964817 −0.482408 0.875946i \(-0.660238\pi\)
−0.482408 + 0.875946i \(0.660238\pi\)
\(972\) 0 0
\(973\) 2692.97 0.0887283
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1150.88 0.0376867 0.0188433 0.999822i \(-0.494002\pi\)
0.0188433 + 0.999822i \(0.494002\pi\)
\(978\) 0 0
\(979\) −35414.6 −1.15613
\(980\) 0 0
\(981\) −42713.2 −1.39014
\(982\) 0 0
\(983\) 9924.92 0.322030 0.161015 0.986952i \(-0.448523\pi\)
0.161015 + 0.986952i \(0.448523\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −30.9961 −0.000999612 0
\(988\) 0 0
\(989\) −411.533 −0.0132315
\(990\) 0 0
\(991\) 32446.8 1.04007 0.520034 0.854146i \(-0.325919\pi\)
0.520034 + 0.854146i \(0.325919\pi\)
\(992\) 0 0
\(993\) −22502.4 −0.719127
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −49280.6 −1.56543 −0.782715 0.622381i \(-0.786166\pi\)
−0.782715 + 0.622381i \(0.786166\pi\)
\(998\) 0 0
\(999\) 4036.68 0.127843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2300.4.a.c.1.3 5
5.2 odd 4 2300.4.c.d.1749.5 10
5.3 odd 4 2300.4.c.d.1749.6 10
5.4 even 2 460.4.a.b.1.3 5
20.19 odd 2 1840.4.a.o.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.4.a.b.1.3 5 5.4 even 2
1840.4.a.o.1.3 5 20.19 odd 2
2300.4.a.c.1.3 5 1.1 even 1 trivial
2300.4.c.d.1749.5 10 5.2 odd 4
2300.4.c.d.1749.6 10 5.3 odd 4