Properties

Label 2300.4.a.c.1.2
Level $2300$
Weight $4$
Character 2300.1
Self dual yes
Analytic conductor $135.704$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,4,Mod(1,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2300.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.704393013\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 80x^{3} + 121x^{2} + 1212x + 1044 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 460)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.72467\) of defining polynomial
Character \(\chi\) \(=\) 2300.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.72467 q^{3} +12.6137 q^{7} +5.77185 q^{9} -21.9786 q^{11} -37.2893 q^{13} -62.5817 q^{17} -137.633 q^{19} -72.2093 q^{21} +23.0000 q^{23} +121.524 q^{27} -71.8975 q^{29} -219.731 q^{31} +125.820 q^{33} +296.223 q^{37} +213.469 q^{39} -305.282 q^{41} -140.234 q^{43} +185.509 q^{47} -183.895 q^{49} +358.260 q^{51} -312.176 q^{53} +787.903 q^{57} -161.771 q^{59} +835.780 q^{61} +72.8043 q^{63} +24.5018 q^{67} -131.667 q^{69} -973.973 q^{71} +343.447 q^{73} -277.231 q^{77} +1214.62 q^{79} -851.526 q^{81} -749.055 q^{83} +411.590 q^{87} +811.662 q^{89} -470.356 q^{91} +1257.89 q^{93} -1026.90 q^{97} -126.857 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} - 8 q^{7} + 30 q^{9} + 7 q^{11} - 5 q^{13} + 24 q^{17} - 13 q^{19} + 115 q^{23} + 204 q^{27} - 253 q^{29} - 98 q^{31} + 473 q^{33} + 435 q^{37} - 410 q^{39} - 774 q^{41} + 498 q^{43} + 572 q^{47}+ \cdots + 111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.72467 −1.10171 −0.550857 0.834600i \(-0.685699\pi\)
−0.550857 + 0.834600i \(0.685699\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 12.6137 0.681076 0.340538 0.940231i \(-0.389391\pi\)
0.340538 + 0.940231i \(0.389391\pi\)
\(8\) 0 0
\(9\) 5.77185 0.213772
\(10\) 0 0
\(11\) −21.9786 −0.602435 −0.301217 0.953555i \(-0.597393\pi\)
−0.301217 + 0.953555i \(0.597393\pi\)
\(12\) 0 0
\(13\) −37.2893 −0.795554 −0.397777 0.917482i \(-0.630218\pi\)
−0.397777 + 0.917482i \(0.630218\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −62.5817 −0.892841 −0.446420 0.894823i \(-0.647301\pi\)
−0.446420 + 0.894823i \(0.647301\pi\)
\(18\) 0 0
\(19\) −137.633 −1.66185 −0.830925 0.556384i \(-0.812188\pi\)
−0.830925 + 0.556384i \(0.812188\pi\)
\(20\) 0 0
\(21\) −72.2093 −0.750350
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 121.524 0.866198
\(28\) 0 0
\(29\) −71.8975 −0.460380 −0.230190 0.973146i \(-0.573935\pi\)
−0.230190 + 0.973146i \(0.573935\pi\)
\(30\) 0 0
\(31\) −219.731 −1.27306 −0.636531 0.771251i \(-0.719631\pi\)
−0.636531 + 0.771251i \(0.719631\pi\)
\(32\) 0 0
\(33\) 125.820 0.663710
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 296.223 1.31618 0.658091 0.752939i \(-0.271364\pi\)
0.658091 + 0.752939i \(0.271364\pi\)
\(38\) 0 0
\(39\) 213.469 0.876473
\(40\) 0 0
\(41\) −305.282 −1.16285 −0.581427 0.813599i \(-0.697505\pi\)
−0.581427 + 0.813599i \(0.697505\pi\)
\(42\) 0 0
\(43\) −140.234 −0.497338 −0.248669 0.968588i \(-0.579993\pi\)
−0.248669 + 0.968588i \(0.579993\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 185.509 0.575730 0.287865 0.957671i \(-0.407055\pi\)
0.287865 + 0.957671i \(0.407055\pi\)
\(48\) 0 0
\(49\) −183.895 −0.536136
\(50\) 0 0
\(51\) 358.260 0.983654
\(52\) 0 0
\(53\) −312.176 −0.809069 −0.404534 0.914523i \(-0.632566\pi\)
−0.404534 + 0.914523i \(0.632566\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 787.903 1.83088
\(58\) 0 0
\(59\) −161.771 −0.356964 −0.178482 0.983943i \(-0.557119\pi\)
−0.178482 + 0.983943i \(0.557119\pi\)
\(60\) 0 0
\(61\) 835.780 1.75427 0.877137 0.480240i \(-0.159450\pi\)
0.877137 + 0.480240i \(0.159450\pi\)
\(62\) 0 0
\(63\) 72.8043 0.145595
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 24.5018 0.0446772 0.0223386 0.999750i \(-0.492889\pi\)
0.0223386 + 0.999750i \(0.492889\pi\)
\(68\) 0 0
\(69\) −131.667 −0.229723
\(70\) 0 0
\(71\) −973.973 −1.62802 −0.814009 0.580852i \(-0.802719\pi\)
−0.814009 + 0.580852i \(0.802719\pi\)
\(72\) 0 0
\(73\) 343.447 0.550650 0.275325 0.961351i \(-0.411214\pi\)
0.275325 + 0.961351i \(0.411214\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −277.231 −0.410304
\(78\) 0 0
\(79\) 1214.62 1.72981 0.864905 0.501935i \(-0.167378\pi\)
0.864905 + 0.501935i \(0.167378\pi\)
\(80\) 0 0
\(81\) −851.526 −1.16807
\(82\) 0 0
\(83\) −749.055 −0.990597 −0.495298 0.868723i \(-0.664941\pi\)
−0.495298 + 0.868723i \(0.664941\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 411.590 0.507207
\(88\) 0 0
\(89\) 811.662 0.966696 0.483348 0.875428i \(-0.339421\pi\)
0.483348 + 0.875428i \(0.339421\pi\)
\(90\) 0 0
\(91\) −470.356 −0.541833
\(92\) 0 0
\(93\) 1257.89 1.40255
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1026.90 −1.07491 −0.537455 0.843293i \(-0.680614\pi\)
−0.537455 + 0.843293i \(0.680614\pi\)
\(98\) 0 0
\(99\) −126.857 −0.128784
\(100\) 0 0
\(101\) −788.330 −0.776651 −0.388326 0.921522i \(-0.626946\pi\)
−0.388326 + 0.921522i \(0.626946\pi\)
\(102\) 0 0
\(103\) −471.764 −0.451304 −0.225652 0.974208i \(-0.572451\pi\)
−0.225652 + 0.974208i \(0.572451\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1402.85 1.26746 0.633732 0.773553i \(-0.281522\pi\)
0.633732 + 0.773553i \(0.281522\pi\)
\(108\) 0 0
\(109\) −2151.31 −1.89044 −0.945221 0.326432i \(-0.894154\pi\)
−0.945221 + 0.326432i \(0.894154\pi\)
\(110\) 0 0
\(111\) −1695.78 −1.45005
\(112\) 0 0
\(113\) −754.833 −0.628396 −0.314198 0.949358i \(-0.601736\pi\)
−0.314198 + 0.949358i \(0.601736\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −215.228 −0.170067
\(118\) 0 0
\(119\) −789.387 −0.608092
\(120\) 0 0
\(121\) −847.943 −0.637072
\(122\) 0 0
\(123\) 1747.64 1.28113
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2161.28 −1.51010 −0.755050 0.655667i \(-0.772388\pi\)
−0.755050 + 0.655667i \(0.772388\pi\)
\(128\) 0 0
\(129\) 802.796 0.547924
\(130\) 0 0
\(131\) 397.736 0.265270 0.132635 0.991165i \(-0.457656\pi\)
0.132635 + 0.991165i \(0.457656\pi\)
\(132\) 0 0
\(133\) −1736.06 −1.13185
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1660.73 1.03566 0.517831 0.855483i \(-0.326740\pi\)
0.517831 + 0.855483i \(0.326740\pi\)
\(138\) 0 0
\(139\) −997.853 −0.608897 −0.304449 0.952529i \(-0.598472\pi\)
−0.304449 + 0.952529i \(0.598472\pi\)
\(140\) 0 0
\(141\) −1061.98 −0.634289
\(142\) 0 0
\(143\) 819.566 0.479270
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1052.74 0.590668
\(148\) 0 0
\(149\) 3014.50 1.65743 0.828715 0.559671i \(-0.189072\pi\)
0.828715 + 0.559671i \(0.189072\pi\)
\(150\) 0 0
\(151\) −684.908 −0.369120 −0.184560 0.982821i \(-0.559086\pi\)
−0.184560 + 0.982821i \(0.559086\pi\)
\(152\) 0 0
\(153\) −361.212 −0.190864
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −727.598 −0.369864 −0.184932 0.982751i \(-0.559206\pi\)
−0.184932 + 0.982751i \(0.559206\pi\)
\(158\) 0 0
\(159\) 1787.10 0.891362
\(160\) 0 0
\(161\) 290.115 0.142014
\(162\) 0 0
\(163\) 768.718 0.369390 0.184695 0.982796i \(-0.440870\pi\)
0.184695 + 0.982796i \(0.440870\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 243.397 0.112782 0.0563910 0.998409i \(-0.482041\pi\)
0.0563910 + 0.998409i \(0.482041\pi\)
\(168\) 0 0
\(169\) −806.505 −0.367094
\(170\) 0 0
\(171\) −794.396 −0.355257
\(172\) 0 0
\(173\) 201.538 0.0885702 0.0442851 0.999019i \(-0.485899\pi\)
0.0442851 + 0.999019i \(0.485899\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 926.088 0.393272
\(178\) 0 0
\(179\) −722.564 −0.301715 −0.150857 0.988556i \(-0.548203\pi\)
−0.150857 + 0.988556i \(0.548203\pi\)
\(180\) 0 0
\(181\) 2117.76 0.869678 0.434839 0.900508i \(-0.356805\pi\)
0.434839 + 0.900508i \(0.356805\pi\)
\(182\) 0 0
\(183\) −4784.57 −1.93271
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1375.46 0.537878
\(188\) 0 0
\(189\) 1532.87 0.589946
\(190\) 0 0
\(191\) 82.9624 0.0314290 0.0157145 0.999877i \(-0.494998\pi\)
0.0157145 + 0.999877i \(0.494998\pi\)
\(192\) 0 0
\(193\) −1350.43 −0.503657 −0.251829 0.967772i \(-0.581032\pi\)
−0.251829 + 0.967772i \(0.581032\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4317.69 −1.56154 −0.780769 0.624820i \(-0.785172\pi\)
−0.780769 + 0.624820i \(0.785172\pi\)
\(198\) 0 0
\(199\) 3026.27 1.07802 0.539011 0.842299i \(-0.318798\pi\)
0.539011 + 0.842299i \(0.318798\pi\)
\(200\) 0 0
\(201\) −140.265 −0.0492215
\(202\) 0 0
\(203\) −906.893 −0.313554
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 132.752 0.0445746
\(208\) 0 0
\(209\) 3024.97 1.00116
\(210\) 0 0
\(211\) 2292.01 0.747812 0.373906 0.927467i \(-0.378018\pi\)
0.373906 + 0.927467i \(0.378018\pi\)
\(212\) 0 0
\(213\) 5575.67 1.79361
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2771.62 −0.867051
\(218\) 0 0
\(219\) −1966.12 −0.606659
\(220\) 0 0
\(221\) 2333.63 0.710303
\(222\) 0 0
\(223\) 2997.29 0.900061 0.450030 0.893013i \(-0.351413\pi\)
0.450030 + 0.893013i \(0.351413\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5786.16 1.69181 0.845905 0.533333i \(-0.179061\pi\)
0.845905 + 0.533333i \(0.179061\pi\)
\(228\) 0 0
\(229\) 4516.35 1.30327 0.651635 0.758532i \(-0.274083\pi\)
0.651635 + 0.758532i \(0.274083\pi\)
\(230\) 0 0
\(231\) 1587.05 0.452037
\(232\) 0 0
\(233\) −2990.75 −0.840903 −0.420452 0.907315i \(-0.638128\pi\)
−0.420452 + 0.907315i \(0.638128\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −6953.28 −1.90575
\(238\) 0 0
\(239\) 4043.74 1.09443 0.547213 0.836994i \(-0.315689\pi\)
0.547213 + 0.836994i \(0.315689\pi\)
\(240\) 0 0
\(241\) 3653.64 0.976564 0.488282 0.872686i \(-0.337624\pi\)
0.488282 + 0.872686i \(0.337624\pi\)
\(242\) 0 0
\(243\) 1593.55 0.420684
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5132.24 1.32209
\(248\) 0 0
\(249\) 4288.09 1.09135
\(250\) 0 0
\(251\) −6799.45 −1.70987 −0.854935 0.518735i \(-0.826403\pi\)
−0.854935 + 0.518735i \(0.826403\pi\)
\(252\) 0 0
\(253\) −505.507 −0.125616
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −179.925 −0.0436710 −0.0218355 0.999762i \(-0.506951\pi\)
−0.0218355 + 0.999762i \(0.506951\pi\)
\(258\) 0 0
\(259\) 3736.46 0.896419
\(260\) 0 0
\(261\) −414.981 −0.0984165
\(262\) 0 0
\(263\) 1148.48 0.269271 0.134635 0.990895i \(-0.457014\pi\)
0.134635 + 0.990895i \(0.457014\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4646.50 −1.06502
\(268\) 0 0
\(269\) 2999.90 0.679953 0.339976 0.940434i \(-0.389581\pi\)
0.339976 + 0.940434i \(0.389581\pi\)
\(270\) 0 0
\(271\) 5587.83 1.25253 0.626266 0.779609i \(-0.284582\pi\)
0.626266 + 0.779609i \(0.284582\pi\)
\(272\) 0 0
\(273\) 2692.64 0.596944
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −6219.06 −1.34898 −0.674489 0.738285i \(-0.735636\pi\)
−0.674489 + 0.738285i \(0.735636\pi\)
\(278\) 0 0
\(279\) −1268.26 −0.272145
\(280\) 0 0
\(281\) −6770.91 −1.43743 −0.718717 0.695303i \(-0.755270\pi\)
−0.718717 + 0.695303i \(0.755270\pi\)
\(282\) 0 0
\(283\) 7811.42 1.64078 0.820390 0.571804i \(-0.193756\pi\)
0.820390 + 0.571804i \(0.193756\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3850.73 −0.791991
\(288\) 0 0
\(289\) −996.531 −0.202836
\(290\) 0 0
\(291\) 5878.68 1.18424
\(292\) 0 0
\(293\) 8415.02 1.67785 0.838926 0.544246i \(-0.183184\pi\)
0.838926 + 0.544246i \(0.183184\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2670.93 −0.521828
\(298\) 0 0
\(299\) −857.655 −0.165884
\(300\) 0 0
\(301\) −1768.87 −0.338725
\(302\) 0 0
\(303\) 4512.93 0.855647
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9633.23 1.79087 0.895435 0.445192i \(-0.146865\pi\)
0.895435 + 0.445192i \(0.146865\pi\)
\(308\) 0 0
\(309\) 2700.69 0.497207
\(310\) 0 0
\(311\) −7000.64 −1.27643 −0.638216 0.769858i \(-0.720327\pi\)
−0.638216 + 0.769858i \(0.720327\pi\)
\(312\) 0 0
\(313\) 2954.79 0.533593 0.266796 0.963753i \(-0.414035\pi\)
0.266796 + 0.963753i \(0.414035\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4015.68 0.711492 0.355746 0.934583i \(-0.384227\pi\)
0.355746 + 0.934583i \(0.384227\pi\)
\(318\) 0 0
\(319\) 1580.20 0.277349
\(320\) 0 0
\(321\) −8030.85 −1.39638
\(322\) 0 0
\(323\) 8613.30 1.48377
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 12315.5 2.08272
\(328\) 0 0
\(329\) 2339.96 0.392116
\(330\) 0 0
\(331\) 596.567 0.0990644 0.0495322 0.998773i \(-0.484227\pi\)
0.0495322 + 0.998773i \(0.484227\pi\)
\(332\) 0 0
\(333\) 1709.75 0.281363
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2162.05 −0.349479 −0.174739 0.984615i \(-0.555908\pi\)
−0.174739 + 0.984615i \(0.555908\pi\)
\(338\) 0 0
\(339\) 4321.17 0.692312
\(340\) 0 0
\(341\) 4829.38 0.766937
\(342\) 0 0
\(343\) −6646.09 −1.04622
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8014.61 1.23990 0.619952 0.784639i \(-0.287152\pi\)
0.619952 + 0.784639i \(0.287152\pi\)
\(348\) 0 0
\(349\) 3264.77 0.500743 0.250371 0.968150i \(-0.419447\pi\)
0.250371 + 0.968150i \(0.419447\pi\)
\(350\) 0 0
\(351\) −4531.56 −0.689107
\(352\) 0 0
\(353\) 6659.27 1.00407 0.502036 0.864847i \(-0.332584\pi\)
0.502036 + 0.864847i \(0.332584\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4518.98 0.669943
\(358\) 0 0
\(359\) 670.397 0.0985577 0.0492789 0.998785i \(-0.484308\pi\)
0.0492789 + 0.998785i \(0.484308\pi\)
\(360\) 0 0
\(361\) 12083.8 1.76175
\(362\) 0 0
\(363\) 4854.19 0.701871
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3528.04 −0.501804 −0.250902 0.968013i \(-0.580727\pi\)
−0.250902 + 0.968013i \(0.580727\pi\)
\(368\) 0 0
\(369\) −1762.04 −0.248586
\(370\) 0 0
\(371\) −3937.69 −0.551037
\(372\) 0 0
\(373\) 2718.66 0.377391 0.188695 0.982036i \(-0.439574\pi\)
0.188695 + 0.982036i \(0.439574\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2681.01 0.366258
\(378\) 0 0
\(379\) 10773.8 1.46019 0.730096 0.683345i \(-0.239475\pi\)
0.730096 + 0.683345i \(0.239475\pi\)
\(380\) 0 0
\(381\) 12372.6 1.66370
\(382\) 0 0
\(383\) 6104.18 0.814384 0.407192 0.913343i \(-0.366508\pi\)
0.407192 + 0.913343i \(0.366508\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −809.412 −0.106317
\(388\) 0 0
\(389\) −5056.94 −0.659118 −0.329559 0.944135i \(-0.606900\pi\)
−0.329559 + 0.944135i \(0.606900\pi\)
\(390\) 0 0
\(391\) −1439.38 −0.186170
\(392\) 0 0
\(393\) −2276.91 −0.292251
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −8320.52 −1.05188 −0.525938 0.850523i \(-0.676286\pi\)
−0.525938 + 0.850523i \(0.676286\pi\)
\(398\) 0 0
\(399\) 9938.37 1.24697
\(400\) 0 0
\(401\) 1253.78 0.156137 0.0780685 0.996948i \(-0.475125\pi\)
0.0780685 + 0.996948i \(0.475125\pi\)
\(402\) 0 0
\(403\) 8193.64 1.01279
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6510.55 −0.792914
\(408\) 0 0
\(409\) −11283.0 −1.36408 −0.682041 0.731314i \(-0.738907\pi\)
−0.682041 + 0.731314i \(0.738907\pi\)
\(410\) 0 0
\(411\) −9507.13 −1.14100
\(412\) 0 0
\(413\) −2040.54 −0.243119
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5712.38 0.670830
\(418\) 0 0
\(419\) 4178.10 0.487144 0.243572 0.969883i \(-0.421681\pi\)
0.243572 + 0.969883i \(0.421681\pi\)
\(420\) 0 0
\(421\) −11693.0 −1.35364 −0.676821 0.736147i \(-0.736643\pi\)
−0.676821 + 0.736147i \(0.736643\pi\)
\(422\) 0 0
\(423\) 1070.73 0.123075
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10542.3 1.19479
\(428\) 0 0
\(429\) −4691.74 −0.528018
\(430\) 0 0
\(431\) −11158.2 −1.24703 −0.623515 0.781812i \(-0.714296\pi\)
−0.623515 + 0.781812i \(0.714296\pi\)
\(432\) 0 0
\(433\) 13192.6 1.46419 0.732096 0.681201i \(-0.238542\pi\)
0.732096 + 0.681201i \(0.238542\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3165.56 −0.346520
\(438\) 0 0
\(439\) −1659.40 −0.180407 −0.0902037 0.995923i \(-0.528752\pi\)
−0.0902037 + 0.995923i \(0.528752\pi\)
\(440\) 0 0
\(441\) −1061.41 −0.114611
\(442\) 0 0
\(443\) −5144.57 −0.551752 −0.275876 0.961193i \(-0.588968\pi\)
−0.275876 + 0.961193i \(0.588968\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −17257.0 −1.82601
\(448\) 0 0
\(449\) 5469.59 0.574891 0.287446 0.957797i \(-0.407194\pi\)
0.287446 + 0.957797i \(0.407194\pi\)
\(450\) 0 0
\(451\) 6709.65 0.700544
\(452\) 0 0
\(453\) 3920.87 0.406664
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6063.04 −0.620606 −0.310303 0.950638i \(-0.600431\pi\)
−0.310303 + 0.950638i \(0.600431\pi\)
\(458\) 0 0
\(459\) −7605.19 −0.773377
\(460\) 0 0
\(461\) 4025.39 0.406684 0.203342 0.979108i \(-0.434820\pi\)
0.203342 + 0.979108i \(0.434820\pi\)
\(462\) 0 0
\(463\) 4617.49 0.463483 0.231742 0.972777i \(-0.425558\pi\)
0.231742 + 0.972777i \(0.425558\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4012.00 −0.397544 −0.198772 0.980046i \(-0.563695\pi\)
−0.198772 + 0.980046i \(0.563695\pi\)
\(468\) 0 0
\(469\) 309.058 0.0304285
\(470\) 0 0
\(471\) 4165.26 0.407484
\(472\) 0 0
\(473\) 3082.15 0.299614
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1801.83 −0.172956
\(478\) 0 0
\(479\) −7317.02 −0.697961 −0.348980 0.937130i \(-0.613472\pi\)
−0.348980 + 0.937130i \(0.613472\pi\)
\(480\) 0 0
\(481\) −11046.0 −1.04709
\(482\) 0 0
\(483\) −1660.81 −0.156459
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3708.67 0.345084 0.172542 0.985002i \(-0.444802\pi\)
0.172542 + 0.985002i \(0.444802\pi\)
\(488\) 0 0
\(489\) −4400.66 −0.406962
\(490\) 0 0
\(491\) 6689.69 0.614871 0.307435 0.951569i \(-0.400529\pi\)
0.307435 + 0.951569i \(0.400529\pi\)
\(492\) 0 0
\(493\) 4499.47 0.411046
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12285.4 −1.10880
\(498\) 0 0
\(499\) 17381.9 1.55936 0.779678 0.626180i \(-0.215383\pi\)
0.779678 + 0.626180i \(0.215383\pi\)
\(500\) 0 0
\(501\) −1393.37 −0.124253
\(502\) 0 0
\(503\) −9771.20 −0.866156 −0.433078 0.901357i \(-0.642572\pi\)
−0.433078 + 0.901357i \(0.642572\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4616.97 0.404432
\(508\) 0 0
\(509\) 5820.46 0.506852 0.253426 0.967355i \(-0.418443\pi\)
0.253426 + 0.967355i \(0.418443\pi\)
\(510\) 0 0
\(511\) 4332.14 0.375035
\(512\) 0 0
\(513\) −16725.7 −1.43949
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −4077.22 −0.346840
\(518\) 0 0
\(519\) −1153.74 −0.0975789
\(520\) 0 0
\(521\) −6357.64 −0.534613 −0.267307 0.963612i \(-0.586134\pi\)
−0.267307 + 0.963612i \(0.586134\pi\)
\(522\) 0 0
\(523\) 10556.2 0.882580 0.441290 0.897364i \(-0.354521\pi\)
0.441290 + 0.897364i \(0.354521\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13751.2 1.13664
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −933.720 −0.0763089
\(532\) 0 0
\(533\) 11383.8 0.925113
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4136.44 0.332403
\(538\) 0 0
\(539\) 4041.74 0.322987
\(540\) 0 0
\(541\) −16883.4 −1.34172 −0.670862 0.741582i \(-0.734076\pi\)
−0.670862 + 0.741582i \(0.734076\pi\)
\(542\) 0 0
\(543\) −12123.5 −0.958136
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 14318.4 1.11922 0.559608 0.828757i \(-0.310952\pi\)
0.559608 + 0.828757i \(0.310952\pi\)
\(548\) 0 0
\(549\) 4824.00 0.375015
\(550\) 0 0
\(551\) 9895.47 0.765084
\(552\) 0 0
\(553\) 15320.8 1.17813
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11764.7 0.894946 0.447473 0.894297i \(-0.352324\pi\)
0.447473 + 0.894297i \(0.352324\pi\)
\(558\) 0 0
\(559\) 5229.25 0.395660
\(560\) 0 0
\(561\) −7874.03 −0.592588
\(562\) 0 0
\(563\) 21201.3 1.58709 0.793543 0.608514i \(-0.208234\pi\)
0.793543 + 0.608514i \(0.208234\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −10740.9 −0.795546
\(568\) 0 0
\(569\) −17206.5 −1.26772 −0.633861 0.773447i \(-0.718531\pi\)
−0.633861 + 0.773447i \(0.718531\pi\)
\(570\) 0 0
\(571\) 12208.3 0.894746 0.447373 0.894348i \(-0.352360\pi\)
0.447373 + 0.894348i \(0.352360\pi\)
\(572\) 0 0
\(573\) −474.932 −0.0346258
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −12432.0 −0.896967 −0.448484 0.893791i \(-0.648036\pi\)
−0.448484 + 0.893791i \(0.648036\pi\)
\(578\) 0 0
\(579\) 7730.75 0.554886
\(580\) 0 0
\(581\) −9448.36 −0.674671
\(582\) 0 0
\(583\) 6861.17 0.487411
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18732.7 1.31718 0.658588 0.752504i \(-0.271154\pi\)
0.658588 + 0.752504i \(0.271154\pi\)
\(588\) 0 0
\(589\) 30242.3 2.11564
\(590\) 0 0
\(591\) 24717.4 1.72037
\(592\) 0 0
\(593\) −16320.1 −1.13016 −0.565081 0.825036i \(-0.691155\pi\)
−0.565081 + 0.825036i \(0.691155\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −17324.4 −1.18767
\(598\) 0 0
\(599\) −7015.52 −0.478542 −0.239271 0.970953i \(-0.576908\pi\)
−0.239271 + 0.970953i \(0.576908\pi\)
\(600\) 0 0
\(601\) −4517.10 −0.306583 −0.153292 0.988181i \(-0.548987\pi\)
−0.153292 + 0.988181i \(0.548987\pi\)
\(602\) 0 0
\(603\) 141.421 0.00955074
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9861.96 0.659448 0.329724 0.944077i \(-0.393044\pi\)
0.329724 + 0.944077i \(0.393044\pi\)
\(608\) 0 0
\(609\) 5191.67 0.345447
\(610\) 0 0
\(611\) −6917.52 −0.458024
\(612\) 0 0
\(613\) −20044.7 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3604.26 0.235174 0.117587 0.993063i \(-0.462484\pi\)
0.117587 + 0.993063i \(0.462484\pi\)
\(618\) 0 0
\(619\) 14864.7 0.965204 0.482602 0.875840i \(-0.339692\pi\)
0.482602 + 0.875840i \(0.339692\pi\)
\(620\) 0 0
\(621\) 2795.06 0.180615
\(622\) 0 0
\(623\) 10238.1 0.658393
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −17317.0 −1.10299
\(628\) 0 0
\(629\) −18538.1 −1.17514
\(630\) 0 0
\(631\) 12677.7 0.799828 0.399914 0.916553i \(-0.369040\pi\)
0.399914 + 0.916553i \(0.369040\pi\)
\(632\) 0 0
\(633\) −13121.0 −0.823875
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6857.31 0.426525
\(638\) 0 0
\(639\) −5621.62 −0.348025
\(640\) 0 0
\(641\) −19168.5 −1.18114 −0.590571 0.806986i \(-0.701097\pi\)
−0.590571 + 0.806986i \(0.701097\pi\)
\(642\) 0 0
\(643\) −31298.6 −1.91959 −0.959793 0.280707i \(-0.909431\pi\)
−0.959793 + 0.280707i \(0.909431\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26340.3 1.60053 0.800267 0.599643i \(-0.204691\pi\)
0.800267 + 0.599643i \(0.204691\pi\)
\(648\) 0 0
\(649\) 3555.50 0.215047
\(650\) 0 0
\(651\) 15866.6 0.955242
\(652\) 0 0
\(653\) −27113.8 −1.62488 −0.812439 0.583046i \(-0.801861\pi\)
−0.812439 + 0.583046i \(0.801861\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1982.33 0.117714
\(658\) 0 0
\(659\) −24125.5 −1.42609 −0.713046 0.701117i \(-0.752685\pi\)
−0.713046 + 0.701117i \(0.752685\pi\)
\(660\) 0 0
\(661\) 1776.69 0.104546 0.0522732 0.998633i \(-0.483353\pi\)
0.0522732 + 0.998633i \(0.483353\pi\)
\(662\) 0 0
\(663\) −13359.3 −0.782550
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1653.64 −0.0959960
\(668\) 0 0
\(669\) −17158.5 −0.991609
\(670\) 0 0
\(671\) −18369.2 −1.05684
\(672\) 0 0
\(673\) 14137.6 0.809756 0.404878 0.914371i \(-0.367314\pi\)
0.404878 + 0.914371i \(0.367314\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9057.23 0.514177 0.257088 0.966388i \(-0.417237\pi\)
0.257088 + 0.966388i \(0.417237\pi\)
\(678\) 0 0
\(679\) −12953.0 −0.732094
\(680\) 0 0
\(681\) −33123.9 −1.86389
\(682\) 0 0
\(683\) −23206.6 −1.30011 −0.650054 0.759888i \(-0.725254\pi\)
−0.650054 + 0.759888i \(0.725254\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −25854.6 −1.43583
\(688\) 0 0
\(689\) 11640.8 0.643658
\(690\) 0 0
\(691\) 2060.79 0.113453 0.0567265 0.998390i \(-0.481934\pi\)
0.0567265 + 0.998390i \(0.481934\pi\)
\(692\) 0 0
\(693\) −1600.13 −0.0877115
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 19105.0 1.03824
\(698\) 0 0
\(699\) 17121.1 0.926434
\(700\) 0 0
\(701\) 4057.66 0.218624 0.109312 0.994007i \(-0.465135\pi\)
0.109312 + 0.994007i \(0.465135\pi\)
\(702\) 0 0
\(703\) −40770.0 −2.18730
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9943.76 −0.528958
\(708\) 0 0
\(709\) 18777.0 0.994622 0.497311 0.867572i \(-0.334321\pi\)
0.497311 + 0.867572i \(0.334321\pi\)
\(710\) 0 0
\(711\) 7010.58 0.369785
\(712\) 0 0
\(713\) −5053.82 −0.265452
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −23149.1 −1.20574
\(718\) 0 0
\(719\) −2217.63 −0.115026 −0.0575129 0.998345i \(-0.518317\pi\)
−0.0575129 + 0.998345i \(0.518317\pi\)
\(720\) 0 0
\(721\) −5950.69 −0.307372
\(722\) 0 0
\(723\) −20915.9 −1.07589
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 23162.5 1.18164 0.590818 0.806805i \(-0.298805\pi\)
0.590818 + 0.806805i \(0.298805\pi\)
\(728\) 0 0
\(729\) 13868.6 0.704600
\(730\) 0 0
\(731\) 8776.11 0.444044
\(732\) 0 0
\(733\) −11686.4 −0.588875 −0.294438 0.955671i \(-0.595132\pi\)
−0.294438 + 0.955671i \(0.595132\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −538.514 −0.0269151
\(738\) 0 0
\(739\) −7408.28 −0.368766 −0.184383 0.982854i \(-0.559029\pi\)
−0.184383 + 0.982854i \(0.559029\pi\)
\(740\) 0 0
\(741\) −29380.4 −1.45657
\(742\) 0 0
\(743\) 7008.68 0.346061 0.173031 0.984916i \(-0.444644\pi\)
0.173031 + 0.984916i \(0.444644\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4323.43 −0.211762
\(748\) 0 0
\(749\) 17695.1 0.863238
\(750\) 0 0
\(751\) 10916.9 0.530443 0.265222 0.964187i \(-0.414555\pi\)
0.265222 + 0.964187i \(0.414555\pi\)
\(752\) 0 0
\(753\) 38924.6 1.88379
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −14124.7 −0.678165 −0.339083 0.940757i \(-0.610117\pi\)
−0.339083 + 0.940757i \(0.610117\pi\)
\(758\) 0 0
\(759\) 2893.86 0.138393
\(760\) 0 0
\(761\) 6947.27 0.330931 0.165465 0.986216i \(-0.447087\pi\)
0.165465 + 0.986216i \(0.447087\pi\)
\(762\) 0 0
\(763\) −27136.0 −1.28753
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6032.35 0.283984
\(768\) 0 0
\(769\) 19409.1 0.910158 0.455079 0.890451i \(-0.349611\pi\)
0.455079 + 0.890451i \(0.349611\pi\)
\(770\) 0 0
\(771\) 1030.01 0.0481129
\(772\) 0 0
\(773\) 32794.2 1.52591 0.762954 0.646453i \(-0.223748\pi\)
0.762954 + 0.646453i \(0.223748\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −21390.0 −0.987597
\(778\) 0 0
\(779\) 42016.8 1.93249
\(780\) 0 0
\(781\) 21406.5 0.980775
\(782\) 0 0
\(783\) −8737.29 −0.398781
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1234.92 −0.0559341 −0.0279670 0.999609i \(-0.508903\pi\)
−0.0279670 + 0.999609i \(0.508903\pi\)
\(788\) 0 0
\(789\) −6574.66 −0.296659
\(790\) 0 0
\(791\) −9521.24 −0.427985
\(792\) 0 0
\(793\) −31165.7 −1.39562
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19464.3 0.865070 0.432535 0.901617i \(-0.357619\pi\)
0.432535 + 0.901617i \(0.357619\pi\)
\(798\) 0 0
\(799\) −11609.5 −0.514035
\(800\) 0 0
\(801\) 4684.79 0.206653
\(802\) 0 0
\(803\) −7548.48 −0.331731
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −17173.4 −0.749113
\(808\) 0 0
\(809\) −33587.0 −1.45965 −0.729824 0.683635i \(-0.760398\pi\)
−0.729824 + 0.683635i \(0.760398\pi\)
\(810\) 0 0
\(811\) −2612.03 −0.113096 −0.0565479 0.998400i \(-0.518009\pi\)
−0.0565479 + 0.998400i \(0.518009\pi\)
\(812\) 0 0
\(813\) −31988.5 −1.37993
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 19300.9 0.826502
\(818\) 0 0
\(819\) −2714.83 −0.115829
\(820\) 0 0
\(821\) −17811.2 −0.757146 −0.378573 0.925572i \(-0.623585\pi\)
−0.378573 + 0.925572i \(0.623585\pi\)
\(822\) 0 0
\(823\) −30535.0 −1.29330 −0.646649 0.762788i \(-0.723830\pi\)
−0.646649 + 0.762788i \(0.723830\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3344.05 0.140609 0.0703047 0.997526i \(-0.477603\pi\)
0.0703047 + 0.997526i \(0.477603\pi\)
\(828\) 0 0
\(829\) −24905.6 −1.04344 −0.521718 0.853118i \(-0.674709\pi\)
−0.521718 + 0.853118i \(0.674709\pi\)
\(830\) 0 0
\(831\) 35602.1 1.48619
\(832\) 0 0
\(833\) 11508.4 0.478684
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −26702.7 −1.10272
\(838\) 0 0
\(839\) −38233.9 −1.57328 −0.786639 0.617413i \(-0.788181\pi\)
−0.786639 + 0.617413i \(0.788181\pi\)
\(840\) 0 0
\(841\) −19219.7 −0.788050
\(842\) 0 0
\(843\) 38761.2 1.58364
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10695.7 −0.433894
\(848\) 0 0
\(849\) −44717.8 −1.80767
\(850\) 0 0
\(851\) 6813.12 0.274443
\(852\) 0 0
\(853\) −21297.4 −0.854875 −0.427438 0.904045i \(-0.640584\pi\)
−0.427438 + 0.904045i \(0.640584\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2100.08 0.0837074 0.0418537 0.999124i \(-0.486674\pi\)
0.0418537 + 0.999124i \(0.486674\pi\)
\(858\) 0 0
\(859\) −16555.4 −0.657582 −0.328791 0.944403i \(-0.606641\pi\)
−0.328791 + 0.944403i \(0.606641\pi\)
\(860\) 0 0
\(861\) 22044.2 0.872547
\(862\) 0 0
\(863\) 40225.0 1.58664 0.793322 0.608802i \(-0.208350\pi\)
0.793322 + 0.608802i \(0.208350\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5704.81 0.223467
\(868\) 0 0
\(869\) −26695.5 −1.04210
\(870\) 0 0
\(871\) −913.656 −0.0355431
\(872\) 0 0
\(873\) −5927.13 −0.229786
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −35335.8 −1.36055 −0.680277 0.732955i \(-0.738141\pi\)
−0.680277 + 0.732955i \(0.738141\pi\)
\(878\) 0 0
\(879\) −48173.2 −1.84851
\(880\) 0 0
\(881\) 28460.9 1.08839 0.544196 0.838958i \(-0.316835\pi\)
0.544196 + 0.838958i \(0.316835\pi\)
\(882\) 0 0
\(883\) 35713.3 1.36110 0.680548 0.732703i \(-0.261742\pi\)
0.680548 + 0.732703i \(0.261742\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 354.759 0.0134292 0.00671458 0.999977i \(-0.497863\pi\)
0.00671458 + 0.999977i \(0.497863\pi\)
\(888\) 0 0
\(889\) −27261.8 −1.02849
\(890\) 0 0
\(891\) 18715.3 0.703688
\(892\) 0 0
\(893\) −25532.2 −0.956777
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4909.79 0.182757
\(898\) 0 0
\(899\) 15798.1 0.586093
\(900\) 0 0
\(901\) 19536.5 0.722370
\(902\) 0 0
\(903\) 10126.2 0.373178
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 41414.8 1.51616 0.758080 0.652162i \(-0.226138\pi\)
0.758080 + 0.652162i \(0.226138\pi\)
\(908\) 0 0
\(909\) −4550.12 −0.166026
\(910\) 0 0
\(911\) 4521.49 0.164439 0.0822194 0.996614i \(-0.473799\pi\)
0.0822194 + 0.996614i \(0.473799\pi\)
\(912\) 0 0
\(913\) 16463.2 0.596770
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5016.92 0.180669
\(918\) 0 0
\(919\) −31097.0 −1.11621 −0.558104 0.829771i \(-0.688471\pi\)
−0.558104 + 0.829771i \(0.688471\pi\)
\(920\) 0 0
\(921\) −55147.0 −1.97303
\(922\) 0 0
\(923\) 36318.8 1.29518
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2722.95 −0.0964761
\(928\) 0 0
\(929\) 11243.2 0.397070 0.198535 0.980094i \(-0.436382\pi\)
0.198535 + 0.980094i \(0.436382\pi\)
\(930\) 0 0
\(931\) 25310.0 0.890978
\(932\) 0 0
\(933\) 40076.4 1.40626
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 31275.3 1.09042 0.545209 0.838300i \(-0.316450\pi\)
0.545209 + 0.838300i \(0.316450\pi\)
\(938\) 0 0
\(939\) −16915.2 −0.587866
\(940\) 0 0
\(941\) −19726.6 −0.683387 −0.341694 0.939811i \(-0.611001\pi\)
−0.341694 + 0.939811i \(0.611001\pi\)
\(942\) 0 0
\(943\) −7021.48 −0.242472
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9073.85 0.311363 0.155681 0.987807i \(-0.450243\pi\)
0.155681 + 0.987807i \(0.450243\pi\)
\(948\) 0 0
\(949\) −12806.9 −0.438072
\(950\) 0 0
\(951\) −22988.4 −0.783860
\(952\) 0 0
\(953\) −20332.8 −0.691125 −0.345563 0.938396i \(-0.612312\pi\)
−0.345563 + 0.938396i \(0.612312\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −9046.14 −0.305559
\(958\) 0 0
\(959\) 20947.9 0.705364
\(960\) 0 0
\(961\) 18490.8 0.620686
\(962\) 0 0
\(963\) 8097.03 0.270948
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10303.5 0.342646 0.171323 0.985215i \(-0.445196\pi\)
0.171323 + 0.985215i \(0.445196\pi\)
\(968\) 0 0
\(969\) −49308.3 −1.63469
\(970\) 0 0
\(971\) −937.151 −0.0309728 −0.0154864 0.999880i \(-0.504930\pi\)
−0.0154864 + 0.999880i \(0.504930\pi\)
\(972\) 0 0
\(973\) −12586.6 −0.414705
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23339.0 0.764258 0.382129 0.924109i \(-0.375191\pi\)
0.382129 + 0.924109i \(0.375191\pi\)
\(978\) 0 0
\(979\) −17839.2 −0.582372
\(980\) 0 0
\(981\) −12417.0 −0.404124
\(982\) 0 0
\(983\) −26638.6 −0.864334 −0.432167 0.901794i \(-0.642251\pi\)
−0.432167 + 0.901794i \(0.642251\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −13395.5 −0.431999
\(988\) 0 0
\(989\) −3225.39 −0.103702
\(990\) 0 0
\(991\) −24631.4 −0.789548 −0.394774 0.918778i \(-0.629177\pi\)
−0.394774 + 0.918778i \(0.629177\pi\)
\(992\) 0 0
\(993\) −3415.15 −0.109141
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 31438.3 0.998656 0.499328 0.866413i \(-0.333580\pi\)
0.499328 + 0.866413i \(0.333580\pi\)
\(998\) 0 0
\(999\) 35998.2 1.14007
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2300.4.a.c.1.2 5
5.2 odd 4 2300.4.c.d.1749.8 10
5.3 odd 4 2300.4.c.d.1749.3 10
5.4 even 2 460.4.a.b.1.4 5
20.19 odd 2 1840.4.a.o.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.4.a.b.1.4 5 5.4 even 2
1840.4.a.o.1.2 5 20.19 odd 2
2300.4.a.c.1.2 5 1.1 even 1 trivial
2300.4.c.d.1749.3 10 5.3 odd 4
2300.4.c.d.1749.8 10 5.2 odd 4