Properties

Label 2300.2.y
Level $2300$
Weight $2$
Character orbit 2300.y
Rep. character $\chi_{2300}(137,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $480$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.y (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 575 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 2928 480 2448
Cusp forms 2832 480 2352
Eisenstein series 96 0 96

Trace form

\( 480 q + 4 q^{3} - 8 q^{13} + 22 q^{23} + 36 q^{25} + 40 q^{27} - 40 q^{29} - 16 q^{35} - 80 q^{39} - 44 q^{47} + 4 q^{55} - 60 q^{59} - 70 q^{69} - 40 q^{71} - 60 q^{73} - 24 q^{75} - 44 q^{77} + 160 q^{81}+ \cdots - 56 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 2}\)