Properties

Label 2300.2.x
Level $2300$
Weight $2$
Character orbit 2300.x
Rep. character $\chi_{2300}(47,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $2640$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.x (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 2912 2640 272
Cusp forms 2848 2640 208
Eisenstein series 64 0 64

Trace form

\( 2640 q + 12 q^{8} + 16 q^{10} + 16 q^{12} + 4 q^{13} + 20 q^{17} - 28 q^{18} + 16 q^{22} + 20 q^{25} - 12 q^{28} + 24 q^{30} + 40 q^{32} - 16 q^{33} - 20 q^{37} - 48 q^{38} + 16 q^{40} - 160 q^{42} - 140 q^{44}+ \cdots + 220 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)