Properties

Label 2300.2.u
Level $2300$
Weight $2$
Character orbit 2300.u
Rep. character $\chi_{2300}(101,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $380$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.u (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 3780 380 3400
Cusp forms 3420 380 3040
Eisenstein series 360 0 360

Trace form

\( 380q - 2q^{3} - 2q^{7} - 36q^{9} + O(q^{10}) \) \( 380q - 2q^{3} - 2q^{7} - 36q^{9} + 6q^{11} - 2q^{13} - 13q^{17} - 7q^{19} - 23q^{21} + 28q^{23} - 23q^{27} - 5q^{29} - 13q^{31} + 5q^{33} - 50q^{37} - 42q^{39} + 24q^{41} + 24q^{43} - 50q^{47} - 116q^{49} + 38q^{51} + 14q^{53} - 53q^{57} + 26q^{59} + 40q^{61} - 59q^{63} - 8q^{67} - 157q^{69} - 131q^{71} - 32q^{73} - 35q^{77} + 50q^{79} + 10q^{81} + 11q^{83} + 64q^{87} + 46q^{89} - 30q^{91} + 10q^{93} + 41q^{97} + 201q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 2}\)