Properties

Label 2300.2.q
Level $2300$
Weight $2$
Character orbit 2300.q
Rep. character $\chi_{2300}(369,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $224$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.q (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 1464 224 1240
Cusp forms 1416 224 1192
Eisenstein series 48 0 48

Trace form

\( 224 q + 60 q^{9} - 2 q^{15} + 12 q^{21} - 8 q^{25} - 30 q^{27} + 4 q^{29} + 12 q^{31} - 50 q^{33} + 10 q^{35} + 20 q^{37} - 20 q^{39} - 26 q^{41} - 22 q^{45} - 70 q^{47} - 248 q^{49} - 4 q^{51} - 40 q^{53}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 2}\)