Properties

Label 2300.2.j
Level $2300$
Weight $2$
Character orbit 2300.j
Rep. character $\chi_{2300}(507,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $396$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 744 396 348
Cusp forms 696 396 300
Eisenstein series 48 0 48

Trace form

\( 396 q + 12 q^{8} + 16 q^{12} + 4 q^{13} - 32 q^{16} + 20 q^{17} - 28 q^{18} + 16 q^{22} + 32 q^{26} - 12 q^{28} + 40 q^{32} - 16 q^{33} + 64 q^{36} - 20 q^{37} + 12 q^{38} + 40 q^{42} - 28 q^{48} - 16 q^{52}+ \cdots + 80 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)