Properties

Label 2300.2.c.g
Level $2300$
Weight $2$
Character orbit 2300.c
Analytic conductor $18.366$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2300,2,Mod(1749,2300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2300.1749");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3655924649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 460)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + i q^{7} + 3 q^{9} + 6 q^{11} + 6 i q^{13} - 7 i q^{17} - 2 q^{19} - i q^{23} + 5 q^{29} + q^{31} + 5 i q^{37} - 7 q^{41} + 8 i q^{43} - 8 i q^{47} + 6 q^{49} + 3 i q^{53} - 13 q^{59} - 8 q^{61} + 3 i q^{63} + 9 i q^{67} + 7 q^{71} - 2 i q^{73} + 6 i q^{77} + 12 q^{79} + 9 q^{81} - 5 i q^{83} + 12 q^{89} - 6 q^{91} - 2 i q^{97} + 18 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{9} + 12 q^{11} - 4 q^{19} + 10 q^{29} + 2 q^{31} - 14 q^{41} + 12 q^{49} - 26 q^{59} - 16 q^{61} + 14 q^{71} + 24 q^{79} + 18 q^{81} + 24 q^{89} - 12 q^{91} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1749.1
1.00000i
1.00000i
0 0 0 0 0 1.00000i 0 3.00000 0
1749.2 0 0 0 0 0 1.00000i 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2300.2.c.g 2
5.b even 2 1 inner 2300.2.c.g 2
5.c odd 4 1 460.2.a.b 1
5.c odd 4 1 2300.2.a.e 1
15.e even 4 1 4140.2.a.h 1
20.e even 4 1 1840.2.a.e 1
20.e even 4 1 9200.2.a.q 1
40.i odd 4 1 7360.2.a.m 1
40.k even 4 1 7360.2.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
460.2.a.b 1 5.c odd 4 1
1840.2.a.e 1 20.e even 4 1
2300.2.a.e 1 5.c odd 4 1
2300.2.c.g 2 1.a even 1 1 trivial
2300.2.c.g 2 5.b even 2 1 inner
4140.2.a.h 1 15.e even 4 1
7360.2.a.m 1 40.i odd 4 1
7360.2.a.r 1 40.k even 4 1
9200.2.a.q 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2300, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T - 6)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 49 \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T - 5)^{2} \) Copy content Toggle raw display
$31$ \( (T - 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 25 \) Copy content Toggle raw display
$41$ \( (T + 7)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 9 \) Copy content Toggle raw display
$59$ \( (T + 13)^{2} \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 81 \) Copy content Toggle raw display
$71$ \( (T - 7)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T - 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 25 \) Copy content Toggle raw display
$89$ \( (T - 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less