Properties

Label 2300.2.c.d.1749.2
Level $2300$
Weight $2$
Character 2300.1749
Analytic conductor $18.366$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2300,2,Mod(1749,2300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2300.1749");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3655924649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 460)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1749.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2300.1749
Dual form 2300.2.c.d.1749.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +4.00000i q^{7} +2.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +4.00000i q^{7} +2.00000 q^{9} -6.00000 q^{11} -1.00000i q^{13} -2.00000 q^{19} -4.00000 q^{21} +1.00000i q^{23} +5.00000i q^{27} -9.00000 q^{29} +5.00000 q^{31} -6.00000i q^{33} -2.00000i q^{37} +1.00000 q^{39} -9.00000 q^{41} -4.00000i q^{43} +3.00000i q^{47} -9.00000 q^{49} -6.00000i q^{53} -2.00000i q^{57} +2.00000 q^{61} +8.00000i q^{63} +10.0000i q^{67} -1.00000 q^{69} -3.00000 q^{71} -7.00000i q^{73} -24.0000i q^{77} +10.0000 q^{79} +1.00000 q^{81} -12.0000i q^{83} -9.00000i q^{87} +4.00000 q^{91} +5.00000i q^{93} -8.00000i q^{97} -12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{9} - 12 q^{11} - 4 q^{19} - 8 q^{21} - 18 q^{29} + 10 q^{31} + 2 q^{39} - 18 q^{41} - 18 q^{49} + 4 q^{61} - 2 q^{69} - 6 q^{71} + 20 q^{79} + 2 q^{81} + 8 q^{91} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i −0.990338 0.138675i \(-0.955716\pi\)
0.990338 0.138675i \(-0.0442844\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 0 0
\(33\) − 6.00000i − 1.04447i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000i 0.437595i 0.975770 + 0.218797i \(0.0702134\pi\)
−0.975770 + 0.218797i \(0.929787\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.00000i − 0.264906i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 8.00000i 1.00791i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.0000i 1.22169i 0.791748 + 0.610847i \(0.209171\pi\)
−0.791748 + 0.610847i \(0.790829\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 0 0
\(73\) − 7.00000i − 0.819288i −0.912245 0.409644i \(-0.865653\pi\)
0.912245 0.409644i \(-0.134347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 24.0000i − 2.73505i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 9.00000i − 0.964901i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 5.00000i 0.518476i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.00000i − 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 0 0
\(99\) −12.0000 −1.20605
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0000i 1.74013i 0.492941 + 0.870063i \(0.335922\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(108\) 0 0
\(109\) −20.0000 −1.91565 −0.957826 0.287348i \(-0.907226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 12.0000i 1.12887i 0.825479 + 0.564433i \(0.190905\pi\)
−0.825479 + 0.564433i \(0.809095\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.00000i − 0.184900i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) − 9.00000i − 0.811503i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 11.0000i − 0.976092i −0.872818 0.488046i \(-0.837710\pi\)
0.872818 0.488046i \(-0.162290\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0 0
\(133\) − 8.00000i − 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −23.0000 −1.95083 −0.975417 0.220366i \(-0.929275\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) 6.00000i 0.501745i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 9.00000i − 0.742307i
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.00000i 0.319235i 0.987179 + 0.159617i \(0.0510260\pi\)
−0.987179 + 0.159617i \(0.948974\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) − 1.00000i − 0.0783260i −0.999233 0.0391630i \(-0.987531\pi\)
0.999233 0.0391630i \(-0.0124692\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24.0000i 1.85718i 0.371113 + 0.928588i \(0.378976\pi\)
−0.371113 + 0.928588i \(0.621024\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −20.0000 −1.45479
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) − 19.0000i − 1.36765i −0.729646 0.683825i \(-0.760315\pi\)
0.729646 0.683825i \(-0.239685\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 21.0000i − 1.49619i −0.663593 0.748094i \(-0.730969\pi\)
0.663593 0.748094i \(-0.269031\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) −10.0000 −0.705346
\(202\) 0 0
\(203\) − 36.0000i − 2.52670i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.00000i 0.139010i
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) − 3.00000i − 0.205557i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 20.0000i 1.35769i
\(218\) 0 0
\(219\) 7.00000 0.473016
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 16.0000i − 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.0000i 1.59294i 0.604681 + 0.796468i \(0.293301\pi\)
−0.604681 + 0.796468i \(0.706699\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.528655 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(230\) 0 0
\(231\) 24.0000 1.57908
\(232\) 0 0
\(233\) − 9.00000i − 0.589610i −0.955557 0.294805i \(-0.904745\pi\)
0.955557 0.294805i \(-0.0952546\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.0000i 0.649570i
\(238\) 0 0
\(239\) 3.00000 0.194054 0.0970269 0.995282i \(-0.469067\pi\)
0.0970269 + 0.995282i \(0.469067\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 16.0000i 1.02640i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000i 0.127257i
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) − 6.00000i − 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 3.00000i − 0.187135i −0.995613 0.0935674i \(-0.970173\pi\)
0.995613 0.0935674i \(-0.0298271\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) −18.0000 −1.11417
\(262\) 0 0
\(263\) − 6.00000i − 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 27.0000 1.64622 0.823110 0.567883i \(-0.192237\pi\)
0.823110 + 0.567883i \(0.192237\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 4.00000i 0.242091i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 31.0000i 1.86261i 0.364241 + 0.931305i \(0.381328\pi\)
−0.364241 + 0.931305i \(0.618672\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 26.0000i 1.54554i 0.634686 + 0.772770i \(0.281129\pi\)
−0.634686 + 0.772770i \(0.718871\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 36.0000i − 2.12501i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 0 0
\(293\) 24.0000i 1.40209i 0.713115 + 0.701047i \(0.247284\pi\)
−0.713115 + 0.701047i \(0.752716\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 30.0000i − 1.74078i
\(298\) 0 0
\(299\) 1.00000 0.0578315
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) − 6.00000i − 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 32.0000i − 1.82634i −0.407583 0.913168i \(-0.633628\pi\)
0.407583 0.913168i \(-0.366372\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) 21.0000 1.19080 0.595400 0.803429i \(-0.296993\pi\)
0.595400 + 0.803429i \(0.296993\pi\)
\(312\) 0 0
\(313\) 32.0000i 1.80875i 0.426742 + 0.904373i \(0.359661\pi\)
−0.426742 + 0.904373i \(0.640339\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 18.0000i − 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) 54.0000 3.02342
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 20.0000i − 1.10600i
\(328\) 0 0
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 35.0000 1.92377 0.961887 0.273447i \(-0.0881639\pi\)
0.961887 + 0.273447i \(0.0881639\pi\)
\(332\) 0 0
\(333\) − 4.00000i − 0.219199i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 8.00000i − 0.435788i −0.975972 0.217894i \(-0.930081\pi\)
0.975972 0.217894i \(-0.0699187\pi\)
\(338\) 0 0
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) −30.0000 −1.62459
\(342\) 0 0
\(343\) − 8.00000i − 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 36.0000i 1.93258i 0.257454 + 0.966291i \(0.417117\pi\)
−0.257454 + 0.966291i \(0.582883\pi\)
\(348\) 0 0
\(349\) 19.0000 1.01705 0.508523 0.861048i \(-0.330192\pi\)
0.508523 + 0.861048i \(0.330192\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) − 3.00000i − 0.159674i −0.996808 0.0798369i \(-0.974560\pi\)
0.996808 0.0798369i \(-0.0254400\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 25.0000i 1.31216i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 28.0000i 1.46159i 0.682598 + 0.730794i \(0.260850\pi\)
−0.682598 + 0.730794i \(0.739150\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) 26.0000i 1.34623i 0.739538 + 0.673114i \(0.235044\pi\)
−0.739538 + 0.673114i \(0.764956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.00000i 0.463524i
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 11.0000 0.563547
\(382\) 0 0
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 8.00000i − 0.406663i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) − 15.0000i − 0.756650i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 23.0000i − 1.15434i −0.816625 0.577168i \(-0.804158\pi\)
0.816625 0.577168i \(-0.195842\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) − 5.00000i − 0.249068i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000i 0.594818i
\(408\) 0 0
\(409\) 19.0000 0.939490 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 23.0000i − 1.12631i
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 0 0
\(423\) 6.00000i 0.291730i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.00000i 0.387147i
\(428\) 0 0
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.00000i − 0.0956730i
\(438\) 0 0
\(439\) −11.0000 −0.525001 −0.262501 0.964932i \(-0.584547\pi\)
−0.262501 + 0.964932i \(0.584547\pi\)
\(440\) 0 0
\(441\) −18.0000 −0.857143
\(442\) 0 0
\(443\) 9.00000i 0.427603i 0.976877 + 0.213801i \(0.0685846\pi\)
−0.976877 + 0.213801i \(0.931415\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 6.00000i − 0.283790i
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 54.0000 2.54276
\(452\) 0 0
\(453\) 5.00000i 0.234920i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0000i 1.30978i 0.755722 + 0.654892i \(0.227286\pi\)
−0.755722 + 0.654892i \(0.772714\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) 32.0000i 1.48717i 0.668644 + 0.743583i \(0.266875\pi\)
−0.668644 + 0.743583i \(0.733125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.0000i 0.832941i 0.909149 + 0.416470i \(0.136733\pi\)
−0.909149 + 0.416470i \(0.863267\pi\)
\(468\) 0 0
\(469\) −40.0000 −1.84703
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 12.0000i − 0.549442i
\(478\) 0 0
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) − 4.00000i − 0.182006i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 13.0000i 0.589086i 0.955638 + 0.294543i \(0.0951675\pi\)
−0.955638 + 0.294543i \(0.904833\pi\)
\(488\) 0 0
\(489\) 1.00000 0.0452216
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 12.0000i − 0.538274i
\(498\) 0 0
\(499\) 19.0000 0.850557 0.425278 0.905063i \(-0.360176\pi\)
0.425278 + 0.905063i \(0.360176\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 0 0
\(503\) − 6.00000i − 0.267527i −0.991013 0.133763i \(-0.957294\pi\)
0.991013 0.133763i \(-0.0427062\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000i 0.532939i
\(508\) 0 0
\(509\) 3.00000 0.132973 0.0664863 0.997787i \(-0.478821\pi\)
0.0664863 + 0.997787i \(0.478821\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 0 0
\(513\) − 10.0000i − 0.441511i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 18.0000i − 0.791639i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) − 16.0000i − 0.699631i −0.936819 0.349816i \(-0.886244\pi\)
0.936819 0.349816i \(-0.113756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.00000i 0.389833i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 15.0000i − 0.647298i
\(538\) 0 0
\(539\) 54.0000 2.32594
\(540\) 0 0
\(541\) −7.00000 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(542\) 0 0
\(543\) 2.00000i 0.0858282i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.00000i 0.0427569i 0.999771 + 0.0213785i \(0.00680549\pi\)
−0.999771 + 0.0213785i \(0.993195\pi\)
\(548\) 0 0
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) 18.0000 0.766826
\(552\) 0 0
\(553\) 40.0000i 1.70097i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000i 1.01691i 0.861088 + 0.508456i \(0.169784\pi\)
−0.861088 + 0.508456i \(0.830216\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000i 0.505740i 0.967500 + 0.252870i \(0.0813744\pi\)
−0.967500 + 0.252870i \(0.918626\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) − 18.0000i − 0.751961i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 43.0000i 1.79011i 0.445952 + 0.895057i \(0.352865\pi\)
−0.445952 + 0.895057i \(0.647135\pi\)
\(578\) 0 0
\(579\) 19.0000 0.789613
\(580\) 0 0
\(581\) 48.0000 1.99138
\(582\) 0 0
\(583\) 36.0000i 1.49097i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 33.0000i − 1.36206i −0.732257 0.681028i \(-0.761533\pi\)
0.732257 0.681028i \(-0.238467\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 21.0000 0.863825
\(592\) 0 0
\(593\) − 42.0000i − 1.72473i −0.506284 0.862367i \(-0.668981\pi\)
0.506284 0.862367i \(-0.331019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 14.0000i − 0.572982i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 0 0
\(603\) 20.0000i 0.814463i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.00000i 0.162355i 0.996700 + 0.0811775i \(0.0258681\pi\)
−0.996700 + 0.0811775i \(0.974132\pi\)
\(608\) 0 0
\(609\) 36.0000 1.45879
\(610\) 0 0
\(611\) 3.00000 0.121367
\(612\) 0 0
\(613\) − 16.0000i − 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.0000i 1.69086i 0.534089 + 0.845428i \(0.320655\pi\)
−0.534089 + 0.845428i \(0.679345\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −5.00000 −0.200643
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 12.0000i 0.479234i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 20.0000i 0.794929i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.00000i 0.356593i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 0 0
\(643\) 14.0000i 0.552106i 0.961142 + 0.276053i \(0.0890266\pi\)
−0.961142 + 0.276053i \(0.910973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 21.0000i − 0.825595i −0.910823 0.412798i \(-0.864552\pi\)
0.910823 0.412798i \(-0.135448\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 0 0
\(653\) − 9.00000i − 0.352197i −0.984373 0.176099i \(-0.943652\pi\)
0.984373 0.176099i \(-0.0563478\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 14.0000i − 0.546192i
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 9.00000i − 0.348481i
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) − 1.00000i − 0.0385472i −0.999814 0.0192736i \(-0.993865\pi\)
0.999814 0.0192736i \(-0.00613535\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 42.0000i − 1.61419i −0.590421 0.807096i \(-0.701038\pi\)
0.590421 0.807096i \(-0.298962\pi\)
\(678\) 0 0
\(679\) 32.0000 1.22805
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) 3.00000i 0.114792i 0.998351 + 0.0573959i \(0.0182797\pi\)
−0.998351 + 0.0573959i \(0.981720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 8.00000i − 0.305219i
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 0 0
\(693\) − 48.0000i − 1.82337i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 9.00000 0.340411
\(700\) 0 0
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 4.00000i 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 24.0000i − 0.902613i
\(708\) 0 0
\(709\) −32.0000 −1.20179 −0.600893 0.799330i \(-0.705188\pi\)
−0.600893 + 0.799330i \(0.705188\pi\)
\(710\) 0 0
\(711\) 20.0000 0.750059
\(712\) 0 0
\(713\) 5.00000i 0.187251i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.00000i 0.112037i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) − 22.0000i − 0.818189i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10.0000i 0.370879i 0.982656 + 0.185440i \(0.0593710\pi\)
−0.982656 + 0.185440i \(0.940629\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 40.0000i − 1.47743i −0.674016 0.738717i \(-0.735432\pi\)
0.674016 0.738717i \(-0.264568\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 60.0000i − 2.21013i
\(738\) 0 0
\(739\) 25.0000 0.919640 0.459820 0.888012i \(-0.347914\pi\)
0.459820 + 0.888012i \(0.347914\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) 12.0000i 0.440237i 0.975473 + 0.220119i \(0.0706445\pi\)
−0.975473 + 0.220119i \(0.929356\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 24.0000i − 0.878114i
\(748\) 0 0
\(749\) −72.0000 −2.63082
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 34.0000i 1.23575i 0.786276 + 0.617876i \(0.212006\pi\)
−0.786276 + 0.617876i \(0.787994\pi\)
\(758\) 0 0
\(759\) 6.00000 0.217786
\(760\) 0 0
\(761\) −27.0000 −0.978749 −0.489375 0.872074i \(-0.662775\pi\)
−0.489375 + 0.872074i \(0.662775\pi\)
\(762\) 0 0
\(763\) − 80.0000i − 2.89619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 46.0000 1.65880 0.829401 0.558653i \(-0.188682\pi\)
0.829401 + 0.558653i \(0.188682\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 0 0
\(773\) 24.0000i 0.863220i 0.902060 + 0.431610i \(0.142054\pi\)
−0.902060 + 0.431610i \(0.857946\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.00000i 0.286998i
\(778\) 0 0
\(779\) 18.0000 0.644917
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) − 45.0000i − 1.60817i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 0 0
\(789\) 6.00000 0.213606
\(790\) 0 0
\(791\) −48.0000 −1.70668
\(792\) 0 0
\(793\) − 2.00000i − 0.0710221i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.00000i 0.212531i 0.994338 + 0.106265i \(0.0338893\pi\)
−0.994338 + 0.106265i \(0.966111\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 42.0000i 1.48215i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 27.0000i 0.950445i
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) −19.0000 −0.667180 −0.333590 0.942718i \(-0.608260\pi\)
−0.333590 + 0.942718i \(0.608260\pi\)
\(812\) 0 0
\(813\) − 16.0000i − 0.561144i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) 0 0
\(819\) 8.00000 0.279543
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) − 31.0000i − 1.08059i −0.841475 0.540296i \(-0.818312\pi\)
0.841475 0.540296i \(-0.181688\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 48.0000i − 1.66912i −0.550914 0.834562i \(-0.685721\pi\)
0.550914 0.834562i \(-0.314279\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −31.0000 −1.07538
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 25.0000i 0.864126i
\(838\) 0 0
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) − 12.0000i − 0.413302i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 100.000i 3.43604i
\(848\) 0 0
\(849\) −26.0000 −0.892318
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) 38.0000i 1.30110i 0.759465 + 0.650548i \(0.225461\pi\)
−0.759465 + 0.650548i \(0.774539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 39.0000i − 1.33221i −0.745856 0.666107i \(-0.767959\pi\)
0.745856 0.666107i \(-0.232041\pi\)
\(858\) 0 0
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) 0 0
\(861\) 36.0000 1.22688
\(862\) 0 0
\(863\) − 45.0000i − 1.53182i −0.642949 0.765909i \(-0.722289\pi\)
0.642949 0.765909i \(-0.277711\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17.0000i 0.577350i
\(868\) 0 0
\(869\) −60.0000 −2.03536
\(870\) 0 0
\(871\) 10.0000 0.338837
\(872\) 0 0
\(873\) − 16.0000i − 0.541518i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) 0 0
\(879\) −24.0000 −0.809500
\(880\) 0 0
\(881\) 48.0000 1.61716 0.808581 0.588386i \(-0.200236\pi\)
0.808581 + 0.588386i \(0.200236\pi\)
\(882\) 0 0
\(883\) 20.0000i 0.673054i 0.941674 + 0.336527i \(0.109252\pi\)
−0.941674 + 0.336527i \(0.890748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.00000i 0.100730i 0.998731 + 0.0503651i \(0.0160385\pi\)
−0.998731 + 0.0503651i \(0.983962\pi\)
\(888\) 0 0
\(889\) 44.0000 1.47571
\(890\) 0 0
\(891\) −6.00000 −0.201008
\(892\) 0 0
\(893\) − 6.00000i − 0.200782i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.00000i 0.0333890i
\(898\) 0 0
\(899\) −45.0000 −1.50083
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 16.0000i 0.532447i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 10.0000i 0.332045i 0.986122 + 0.166022i \(0.0530924\pi\)
−0.986122 + 0.166022i \(0.946908\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) 72.0000i 2.38285i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 60.0000i − 1.98137i
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) 32.0000 1.05444
\(922\) 0 0
\(923\) 3.00000i 0.0987462i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8.00000i − 0.262754i
\(928\) 0 0
\(929\) −39.0000 −1.27955 −0.639774 0.768563i \(-0.720972\pi\)
−0.639774 + 0.768563i \(0.720972\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 0 0
\(933\) 21.0000i 0.687509i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.0000i 0.718709i 0.933201 + 0.359354i \(0.117003\pi\)
−0.933201 + 0.359354i \(0.882997\pi\)
\(938\) 0 0
\(939\) −32.0000 −1.04428
\(940\) 0 0
\(941\) −12.0000 −0.391189 −0.195594 0.980685i \(-0.562664\pi\)
−0.195594 + 0.980685i \(0.562664\pi\)
\(942\) 0 0
\(943\) − 9.00000i − 0.293080i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 33.0000i − 1.07236i −0.844105 0.536178i \(-0.819868\pi\)
0.844105 0.536178i \(-0.180132\pi\)
\(948\) 0 0
\(949\) −7.00000 −0.227230
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) − 18.0000i − 0.583077i −0.956559 0.291539i \(-0.905833\pi\)
0.956559 0.291539i \(-0.0941672\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 54.0000i 1.74557i
\(958\) 0 0
\(959\) −48.0000 −1.55000
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 36.0000i 1.16008i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 23.0000i − 0.739630i −0.929105 0.369815i \(-0.879421\pi\)
0.929105 0.369815i \(-0.120579\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) − 92.0000i − 2.94938i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −40.0000 −1.27710
\(982\) 0 0
\(983\) 54.0000i 1.72233i 0.508323 + 0.861166i \(0.330265\pi\)
−0.508323 + 0.861166i \(0.669735\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 12.0000i − 0.381964i
\(988\) 0 0
\(989\) 4.00000 0.127193
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 35.0000i 1.11069i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.0000i 0.316703i 0.987383 + 0.158352i \(0.0506179\pi\)
−0.987383 + 0.158352i \(0.949382\pi\)
\(998\) 0 0
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2300.2.c.d.1749.2 2
5.2 odd 4 460.2.a.c.1.1 1
5.3 odd 4 2300.2.a.d.1.1 1
5.4 even 2 inner 2300.2.c.d.1749.1 2
15.2 even 4 4140.2.a.f.1.1 1
20.3 even 4 9200.2.a.y.1.1 1
20.7 even 4 1840.2.a.c.1.1 1
40.27 even 4 7360.2.a.v.1.1 1
40.37 odd 4 7360.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.2.a.c.1.1 1 5.2 odd 4
1840.2.a.c.1.1 1 20.7 even 4
2300.2.a.d.1.1 1 5.3 odd 4
2300.2.c.d.1749.1 2 5.4 even 2 inner
2300.2.c.d.1749.2 2 1.1 even 1 trivial
4140.2.a.f.1.1 1 15.2 even 4
7360.2.a.i.1.1 1 40.37 odd 4
7360.2.a.v.1.1 1 40.27 even 4
9200.2.a.y.1.1 1 20.3 even 4