Properties

Label 2300.2.c.d
Level $2300$
Weight $2$
Character orbit 2300.c
Analytic conductor $18.366$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.3655924649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 460)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} + 4 i q^{7} + 2 q^{9} +O(q^{10})\) \( q + i q^{3} + 4 i q^{7} + 2 q^{9} -6 q^{11} -i q^{13} -2 q^{19} -4 q^{21} + i q^{23} + 5 i q^{27} -9 q^{29} + 5 q^{31} -6 i q^{33} -2 i q^{37} + q^{39} -9 q^{41} -4 i q^{43} + 3 i q^{47} -9 q^{49} -6 i q^{53} -2 i q^{57} + 2 q^{61} + 8 i q^{63} + 10 i q^{67} - q^{69} -3 q^{71} -7 i q^{73} -24 i q^{77} + 10 q^{79} + q^{81} -12 i q^{83} -9 i q^{87} + 4 q^{91} + 5 i q^{93} -8 i q^{97} -12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{9} + O(q^{10}) \) \( 2q + 4q^{9} - 12q^{11} - 4q^{19} - 8q^{21} - 18q^{29} + 10q^{31} + 2q^{39} - 18q^{41} - 18q^{49} + 4q^{61} - 2q^{69} - 6q^{71} + 20q^{79} + 2q^{81} + 8q^{91} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1749.1
1.00000i
1.00000i
0 1.00000i 0 0 0 4.00000i 0 2.00000 0
1749.2 0 1.00000i 0 0 0 4.00000i 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2300.2.c.d 2
5.b even 2 1 inner 2300.2.c.d 2
5.c odd 4 1 460.2.a.c 1
5.c odd 4 1 2300.2.a.d 1
15.e even 4 1 4140.2.a.f 1
20.e even 4 1 1840.2.a.c 1
20.e even 4 1 9200.2.a.y 1
40.i odd 4 1 7360.2.a.i 1
40.k even 4 1 7360.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
460.2.a.c 1 5.c odd 4 1
1840.2.a.c 1 20.e even 4 1
2300.2.a.d 1 5.c odd 4 1
2300.2.c.d 2 1.a even 1 1 trivial
2300.2.c.d 2 5.b even 2 1 inner
4140.2.a.f 1 15.e even 4 1
7360.2.a.i 1 40.i odd 4 1
7360.2.a.v 1 40.k even 4 1
9200.2.a.y 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2300, [\chi])\):

\( T_{3}^{2} + 1 \)
\( T_{7}^{2} + 16 \)
\( T_{11} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 16 + T^{2} \)
$11$ \( ( 6 + T )^{2} \)
$13$ \( 1 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( ( 2 + T )^{2} \)
$23$ \( 1 + T^{2} \)
$29$ \( ( 9 + T )^{2} \)
$31$ \( ( -5 + T )^{2} \)
$37$ \( 4 + T^{2} \)
$41$ \( ( 9 + T )^{2} \)
$43$ \( 16 + T^{2} \)
$47$ \( 9 + T^{2} \)
$53$ \( 36 + T^{2} \)
$59$ \( T^{2} \)
$61$ \( ( -2 + T )^{2} \)
$67$ \( 100 + T^{2} \)
$71$ \( ( 3 + T )^{2} \)
$73$ \( 49 + T^{2} \)
$79$ \( ( -10 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( T^{2} \)
$97$ \( 64 + T^{2} \)
show more
show less