Properties

Label 2300.2.bk
Level $2300$
Weight $2$
Character orbit 2300.bk
Rep. character $\chi_{2300}(41,\cdot)$
Character field $\Q(\zeta_{55})$
Dimension $2400$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.bk (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 575 \)
Character field: \(\Q(\zeta_{55})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 14640 2400 12240
Cusp forms 14160 2400 11760
Eisenstein series 480 0 480

Trace form

\( 2400 q - 4 q^{3} + 6 q^{5} - 4 q^{7} + 56 q^{9} + 10 q^{11} - 8 q^{13} - 23 q^{15} + 6 q^{17} + 16 q^{19} + 8 q^{21} - 60 q^{23} + 64 q^{25} + 26 q^{27} + 12 q^{29} - 12 q^{31} + 30 q^{33} + 16 q^{35} - 84 q^{37}+ \cdots + 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 2}\)