Defining parameters
Level: | \( N \) | \(=\) | \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2300.bj (of order \(44\) and degree \(20\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(\zeta_{44})\) | ||
Sturm bound: | \(720\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7560 | 720 | 6840 |
Cusp forms | 6840 | 720 | 6120 |
Eisenstein series | 720 | 0 | 720 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 2}\)