Properties

Label 2300.2.bj
Level $2300$
Weight $2$
Character orbit 2300.bj
Rep. character $\chi_{2300}(57,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $720$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.bj (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{44})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 7560 720 6840
Cusp forms 6840 720 6120
Eisenstein series 720 0 720

Trace form

\( 720 q - 4 q^{3} + 8 q^{13} - 46 q^{23} + 20 q^{27} - 24 q^{31} - 22 q^{33} + 88 q^{37} - 24 q^{41} + 92 q^{47} + 88 q^{57} - 176 q^{61} + 204 q^{71} - 20 q^{73} - 36 q^{77} - 160 q^{81} - 16 q^{87} + 88 q^{93}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 2}\)