Properties

Label 2300.2.bi
Level $2300$
Weight $2$
Character orbit 2300.bi
Rep. character $\chi_{2300}(243,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $4240$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.bi (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 460 \)
Character field: \(\Q(\zeta_{44})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2300, [\chi])\).

Total New Old
Modular forms 7440 4400 3040
Cusp forms 6960 4240 2720
Eisenstein series 480 160 320

Trace form

\( 4240 q + 18 q^{2} - 20 q^{6} + 18 q^{8} + 6 q^{12} + 36 q^{13} - 20 q^{16} + 36 q^{17} + 38 q^{18} - 40 q^{21} + 28 q^{22} - 36 q^{26} + 34 q^{28} - 2 q^{32} + 60 q^{33} - 132 q^{36} + 36 q^{37} + 10 q^{38}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)