Properties

Label 2300.2.a.m.1.4
Level $2300$
Weight $2$
Character 2300.1
Self dual yes
Analytic conductor $18.366$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,2,Mod(1,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3655924649\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.53121.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.66337\) of defining polynomial
Character \(\chi\) \(=\) 2300.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.66337 q^{3} +0.750930 q^{7} +4.09352 q^{9} -4.57580 q^{11} +3.84445 q^{13} +7.32673 q^{17} +6.57580 q^{19} +2.00000 q^{21} -1.00000 q^{23} +2.91244 q^{27} -7.00595 q^{29} +4.43015 q^{31} -12.1870 q^{33} -0.860303 q^{37} +10.2392 q^{39} -9.60133 q^{41} -6.57580 q^{43} +10.9184 q^{47} -6.43610 q^{49} +19.5138 q^{51} +1.82487 q^{53} +17.5138 q^{57} +7.57580 q^{59} +9.82487 q^{61} +3.07394 q^{63} +10.1870 q^{67} -2.66337 q^{69} -4.42025 q^{71} +4.50781 q^{73} -3.43610 q^{77} +12.0777 q^{79} -4.52367 q^{81} -11.9025 q^{83} -18.6594 q^{87} +3.86402 q^{89} +2.88691 q^{91} +11.7991 q^{93} +0.537289 q^{97} -18.7311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{7} + 2 q^{9} + q^{11} - q^{13} + 8 q^{17} + 7 q^{19} + 8 q^{21} - 4 q^{23} + 3 q^{27} - 5 q^{29} + 14 q^{31} - 20 q^{33} + 4 q^{37} + 11 q^{39} + 3 q^{41} - 7 q^{43} + 12 q^{47} + q^{49} + 28 q^{51}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.66337 1.53769 0.768847 0.639432i \(-0.220831\pi\)
0.768847 + 0.639432i \(0.220831\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.750930 0.283825 0.141912 0.989879i \(-0.454675\pi\)
0.141912 + 0.989879i \(0.454675\pi\)
\(8\) 0 0
\(9\) 4.09352 1.36451
\(10\) 0 0
\(11\) −4.57580 −1.37966 −0.689828 0.723973i \(-0.742314\pi\)
−0.689828 + 0.723973i \(0.742314\pi\)
\(12\) 0 0
\(13\) 3.84445 1.06626 0.533129 0.846034i \(-0.321016\pi\)
0.533129 + 0.846034i \(0.321016\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.32673 1.77699 0.888497 0.458883i \(-0.151750\pi\)
0.888497 + 0.458883i \(0.151750\pi\)
\(18\) 0 0
\(19\) 6.57580 1.50859 0.754296 0.656534i \(-0.227978\pi\)
0.754296 + 0.656534i \(0.227978\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.91244 0.560499
\(28\) 0 0
\(29\) −7.00595 −1.30097 −0.650486 0.759518i \(-0.725435\pi\)
−0.650486 + 0.759518i \(0.725435\pi\)
\(30\) 0 0
\(31\) 4.43015 0.795679 0.397839 0.917455i \(-0.369760\pi\)
0.397839 + 0.917455i \(0.369760\pi\)
\(32\) 0 0
\(33\) −12.1870 −2.12149
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.860303 −0.141433 −0.0707165 0.997496i \(-0.522529\pi\)
−0.0707165 + 0.997496i \(0.522529\pi\)
\(38\) 0 0
\(39\) 10.2392 1.63958
\(40\) 0 0
\(41\) −9.60133 −1.49948 −0.749738 0.661735i \(-0.769820\pi\)
−0.749738 + 0.661735i \(0.769820\pi\)
\(42\) 0 0
\(43\) −6.57580 −1.00280 −0.501400 0.865215i \(-0.667182\pi\)
−0.501400 + 0.865215i \(0.667182\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.9184 1.59261 0.796305 0.604895i \(-0.206785\pi\)
0.796305 + 0.604895i \(0.206785\pi\)
\(48\) 0 0
\(49\) −6.43610 −0.919444
\(50\) 0 0
\(51\) 19.5138 2.73247
\(52\) 0 0
\(53\) 1.82487 0.250666 0.125333 0.992115i \(-0.460000\pi\)
0.125333 + 0.992115i \(0.460000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 17.5138 2.31975
\(58\) 0 0
\(59\) 7.57580 0.986285 0.493143 0.869948i \(-0.335848\pi\)
0.493143 + 0.869948i \(0.335848\pi\)
\(60\) 0 0
\(61\) 9.82487 1.25795 0.628973 0.777427i \(-0.283476\pi\)
0.628973 + 0.777427i \(0.283476\pi\)
\(62\) 0 0
\(63\) 3.07394 0.387280
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.1870 1.24454 0.622272 0.782801i \(-0.286210\pi\)
0.622272 + 0.782801i \(0.286210\pi\)
\(68\) 0 0
\(69\) −2.66337 −0.320632
\(70\) 0 0
\(71\) −4.42025 −0.524587 −0.262294 0.964988i \(-0.584479\pi\)
−0.262294 + 0.964988i \(0.584479\pi\)
\(72\) 0 0
\(73\) 4.50781 0.527600 0.263800 0.964577i \(-0.415024\pi\)
0.263800 + 0.964577i \(0.415024\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.43610 −0.391580
\(78\) 0 0
\(79\) 12.0777 1.35884 0.679422 0.733748i \(-0.262231\pi\)
0.679422 + 0.733748i \(0.262231\pi\)
\(80\) 0 0
\(81\) −4.52367 −0.502630
\(82\) 0 0
\(83\) −11.9025 −1.30647 −0.653236 0.757154i \(-0.726589\pi\)
−0.653236 + 0.757154i \(0.726589\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −18.6594 −2.00050
\(88\) 0 0
\(89\) 3.86402 0.409585 0.204793 0.978805i \(-0.434348\pi\)
0.204793 + 0.978805i \(0.434348\pi\)
\(90\) 0 0
\(91\) 2.88691 0.302630
\(92\) 0 0
\(93\) 11.7991 1.22351
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.537289 0.0545535 0.0272767 0.999628i \(-0.491316\pi\)
0.0272767 + 0.999628i \(0.491316\pi\)
\(98\) 0 0
\(99\) −18.7311 −1.88255
\(100\) 0 0
\(101\) 2.78636 0.277253 0.138627 0.990345i \(-0.455731\pi\)
0.138627 + 0.990345i \(0.455731\pi\)
\(102\) 0 0
\(103\) −4.25279 −0.419040 −0.209520 0.977804i \(-0.567190\pi\)
−0.209520 + 0.977804i \(0.567190\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.68889 −0.549966 −0.274983 0.961449i \(-0.588672\pi\)
−0.274983 + 0.961449i \(0.588672\pi\)
\(108\) 0 0
\(109\) 8.68518 0.831889 0.415944 0.909390i \(-0.363451\pi\)
0.415944 + 0.909390i \(0.363451\pi\)
\(110\) 0 0
\(111\) −2.29130 −0.217481
\(112\) 0 0
\(113\) −8.96457 −0.843316 −0.421658 0.906755i \(-0.638552\pi\)
−0.421658 + 0.906755i \(0.638552\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 15.7373 1.45491
\(118\) 0 0
\(119\) 5.50186 0.504355
\(120\) 0 0
\(121\) 9.93796 0.903451
\(122\) 0 0
\(123\) −25.5719 −2.30574
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.430151 0.0381698 0.0190849 0.999818i \(-0.493925\pi\)
0.0190849 + 0.999818i \(0.493925\pi\)
\(128\) 0 0
\(129\) −17.5138 −1.54200
\(130\) 0 0
\(131\) 13.4920 1.17880 0.589399 0.807842i \(-0.299365\pi\)
0.589399 + 0.807842i \(0.299365\pi\)
\(132\) 0 0
\(133\) 4.93796 0.428176
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.65346 −0.739315 −0.369658 0.929168i \(-0.620525\pi\)
−0.369658 + 0.929168i \(0.620525\pi\)
\(138\) 0 0
\(139\) 8.77050 0.743904 0.371952 0.928252i \(-0.378689\pi\)
0.371952 + 0.928252i \(0.378689\pi\)
\(140\) 0 0
\(141\) 29.0797 2.44895
\(142\) 0 0
\(143\) −17.5914 −1.47107
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −17.1417 −1.41382
\(148\) 0 0
\(149\) −0.143415 −0.0117490 −0.00587452 0.999983i \(-0.501870\pi\)
−0.00587452 + 0.999983i \(0.501870\pi\)
\(150\) 0 0
\(151\) −20.7943 −1.69222 −0.846109 0.533010i \(-0.821061\pi\)
−0.846109 + 0.533010i \(0.821061\pi\)
\(152\) 0 0
\(153\) 29.9921 2.42472
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −18.6654 −1.48966 −0.744829 0.667255i \(-0.767469\pi\)
−0.744829 + 0.667255i \(0.767469\pi\)
\(158\) 0 0
\(159\) 4.86030 0.385447
\(160\) 0 0
\(161\) −0.750930 −0.0591815
\(162\) 0 0
\(163\) −3.21959 −0.252178 −0.126089 0.992019i \(-0.540242\pi\)
−0.126089 + 0.992019i \(0.540242\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.3001 −0.797048 −0.398524 0.917158i \(-0.630477\pi\)
−0.398524 + 0.917158i \(0.630477\pi\)
\(168\) 0 0
\(169\) 1.77977 0.136905
\(170\) 0 0
\(171\) 26.9182 2.05848
\(172\) 0 0
\(173\) −18.1516 −1.38004 −0.690020 0.723790i \(-0.742398\pi\)
−0.690020 + 0.723790i \(0.742398\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 20.1771 1.51661
\(178\) 0 0
\(179\) −0.935729 −0.0699396 −0.0349698 0.999388i \(-0.511134\pi\)
−0.0349698 + 0.999388i \(0.511134\pi\)
\(180\) 0 0
\(181\) 15.6572 1.16379 0.581895 0.813264i \(-0.302312\pi\)
0.581895 + 0.813264i \(0.302312\pi\)
\(182\) 0 0
\(183\) 26.1672 1.93434
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −33.5257 −2.45164
\(188\) 0 0
\(189\) 2.18703 0.159083
\(190\) 0 0
\(191\) 12.8988 0.933326 0.466663 0.884435i \(-0.345456\pi\)
0.466663 + 0.884435i \(0.345456\pi\)
\(192\) 0 0
\(193\) −15.5356 −1.11828 −0.559138 0.829075i \(-0.688868\pi\)
−0.559138 + 0.829075i \(0.688868\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.27088 0.660523 0.330261 0.943890i \(-0.392863\pi\)
0.330261 + 0.943890i \(0.392863\pi\)
\(198\) 0 0
\(199\) 5.89063 0.417575 0.208788 0.977961i \(-0.433048\pi\)
0.208788 + 0.977961i \(0.433048\pi\)
\(200\) 0 0
\(201\) 27.1318 1.91373
\(202\) 0 0
\(203\) −5.26098 −0.369248
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.09352 −0.284519
\(208\) 0 0
\(209\) −30.0896 −2.08134
\(210\) 0 0
\(211\) −14.7274 −1.01388 −0.506938 0.861982i \(-0.669223\pi\)
−0.506938 + 0.861982i \(0.669223\pi\)
\(212\) 0 0
\(213\) −11.7727 −0.806655
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.32673 0.225833
\(218\) 0 0
\(219\) 12.0060 0.811287
\(220\) 0 0
\(221\) 28.1672 1.89473
\(222\) 0 0
\(223\) 3.42048 0.229052 0.114526 0.993420i \(-0.463465\pi\)
0.114526 + 0.993420i \(0.463465\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.4214 1.55453 0.777267 0.629171i \(-0.216606\pi\)
0.777267 + 0.629171i \(0.216606\pi\)
\(228\) 0 0
\(229\) −22.3032 −1.47384 −0.736919 0.675981i \(-0.763720\pi\)
−0.736919 + 0.675981i \(0.763720\pi\)
\(230\) 0 0
\(231\) −9.15160 −0.602131
\(232\) 0 0
\(233\) −14.3817 −0.942179 −0.471089 0.882085i \(-0.656139\pi\)
−0.471089 + 0.882085i \(0.656139\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 32.1672 2.08949
\(238\) 0 0
\(239\) −20.0337 −1.29587 −0.647937 0.761694i \(-0.724368\pi\)
−0.647937 + 0.761694i \(0.724368\pi\)
\(240\) 0 0
\(241\) −19.2950 −1.24290 −0.621451 0.783453i \(-0.713456\pi\)
−0.621451 + 0.783453i \(0.713456\pi\)
\(242\) 0 0
\(243\) −20.7855 −1.33339
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 25.2803 1.60855
\(248\) 0 0
\(249\) −31.7008 −2.00896
\(250\) 0 0
\(251\) −15.4095 −0.972639 −0.486319 0.873781i \(-0.661661\pi\)
−0.486319 + 0.873781i \(0.661661\pi\)
\(252\) 0 0
\(253\) 4.57580 0.287678
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.1454 −1.38139 −0.690697 0.723145i \(-0.742696\pi\)
−0.690697 + 0.723145i \(0.742696\pi\)
\(258\) 0 0
\(259\) −0.646027 −0.0401422
\(260\) 0 0
\(261\) −28.6790 −1.77518
\(262\) 0 0
\(263\) 17.2344 1.06272 0.531358 0.847147i \(-0.321682\pi\)
0.531358 + 0.847147i \(0.321682\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 10.2913 0.629817
\(268\) 0 0
\(269\) 18.1477 1.10648 0.553241 0.833021i \(-0.313391\pi\)
0.553241 + 0.833021i \(0.313391\pi\)
\(270\) 0 0
\(271\) −27.3883 −1.66372 −0.831861 0.554985i \(-0.812724\pi\)
−0.831861 + 0.554985i \(0.812724\pi\)
\(272\) 0 0
\(273\) 7.68889 0.465353
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −25.7567 −1.54757 −0.773784 0.633450i \(-0.781638\pi\)
−0.773784 + 0.633450i \(0.781638\pi\)
\(278\) 0 0
\(279\) 18.1349 1.08571
\(280\) 0 0
\(281\) −20.5100 −1.22353 −0.611763 0.791041i \(-0.709540\pi\)
−0.611763 + 0.791041i \(0.709540\pi\)
\(282\) 0 0
\(283\) 20.1479 1.19767 0.598834 0.800873i \(-0.295631\pi\)
0.598834 + 0.800873i \(0.295631\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.20992 −0.425588
\(288\) 0 0
\(289\) 36.6810 2.15771
\(290\) 0 0
\(291\) 1.43100 0.0838866
\(292\) 0 0
\(293\) −6.33045 −0.369829 −0.184914 0.982755i \(-0.559201\pi\)
−0.184914 + 0.982755i \(0.559201\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −13.3267 −0.773295
\(298\) 0 0
\(299\) −3.84445 −0.222330
\(300\) 0 0
\(301\) −4.93796 −0.284620
\(302\) 0 0
\(303\) 7.42110 0.426331
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −26.8722 −1.53368 −0.766839 0.641839i \(-0.778172\pi\)
−0.766839 + 0.641839i \(0.778172\pi\)
\(308\) 0 0
\(309\) −11.3267 −0.644355
\(310\) 0 0
\(311\) −9.49899 −0.538638 −0.269319 0.963051i \(-0.586799\pi\)
−0.269319 + 0.963051i \(0.586799\pi\)
\(312\) 0 0
\(313\) −31.6810 −1.79072 −0.895358 0.445347i \(-0.853080\pi\)
−0.895358 + 0.445347i \(0.853080\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.4398 1.14801 0.574007 0.818850i \(-0.305388\pi\)
0.574007 + 0.818850i \(0.305388\pi\)
\(318\) 0 0
\(319\) 32.0579 1.79490
\(320\) 0 0
\(321\) −15.1516 −0.845680
\(322\) 0 0
\(323\) 48.1791 2.68076
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 23.1318 1.27919
\(328\) 0 0
\(329\) 8.19894 0.452022
\(330\) 0 0
\(331\) −2.26949 −0.124743 −0.0623713 0.998053i \(-0.519866\pi\)
−0.0623713 + 0.998053i \(0.519866\pi\)
\(332\) 0 0
\(333\) −3.52166 −0.192986
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.11617 0.224222 0.112111 0.993696i \(-0.464239\pi\)
0.112111 + 0.993696i \(0.464239\pi\)
\(338\) 0 0
\(339\) −23.8759 −1.29676
\(340\) 0 0
\(341\) −20.2715 −1.09776
\(342\) 0 0
\(343\) −10.0896 −0.544785
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −25.9499 −1.39306 −0.696531 0.717527i \(-0.745274\pi\)
−0.696531 + 0.717527i \(0.745274\pi\)
\(348\) 0 0
\(349\) 18.8482 1.00892 0.504460 0.863435i \(-0.331692\pi\)
0.504460 + 0.863435i \(0.331692\pi\)
\(350\) 0 0
\(351\) 11.1967 0.597636
\(352\) 0 0
\(353\) −11.8807 −0.632347 −0.316174 0.948701i \(-0.602398\pi\)
−0.316174 + 0.948701i \(0.602398\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 14.6535 0.775544
\(358\) 0 0
\(359\) 15.6957 0.828387 0.414194 0.910189i \(-0.364064\pi\)
0.414194 + 0.910189i \(0.364064\pi\)
\(360\) 0 0
\(361\) 24.2412 1.27585
\(362\) 0 0
\(363\) 26.4684 1.38923
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.0858 0.578677 0.289338 0.957227i \(-0.406565\pi\)
0.289338 + 0.957227i \(0.406565\pi\)
\(368\) 0 0
\(369\) −39.3032 −2.04604
\(370\) 0 0
\(371\) 1.37035 0.0711451
\(372\) 0 0
\(373\) 30.5100 1.57975 0.789875 0.613268i \(-0.210145\pi\)
0.789875 + 0.613268i \(0.210145\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −26.9340 −1.38717
\(378\) 0 0
\(379\) 12.5299 0.643615 0.321808 0.946805i \(-0.395710\pi\)
0.321808 + 0.946805i \(0.395710\pi\)
\(380\) 0 0
\(381\) 1.14565 0.0586935
\(382\) 0 0
\(383\) −17.4480 −0.891552 −0.445776 0.895145i \(-0.647072\pi\)
−0.445776 + 0.895145i \(0.647072\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −26.9182 −1.36833
\(388\) 0 0
\(389\) 8.98391 0.455502 0.227751 0.973719i \(-0.426863\pi\)
0.227751 + 0.973719i \(0.426863\pi\)
\(390\) 0 0
\(391\) −7.32673 −0.370529
\(392\) 0 0
\(393\) 35.9340 1.81263
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.7334 0.940200 0.470100 0.882613i \(-0.344218\pi\)
0.470100 + 0.882613i \(0.344218\pi\)
\(398\) 0 0
\(399\) 13.1516 0.658404
\(400\) 0 0
\(401\) −30.6852 −1.53234 −0.766172 0.642635i \(-0.777841\pi\)
−0.766172 + 0.642635i \(0.777841\pi\)
\(402\) 0 0
\(403\) 17.0315 0.848399
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.93658 0.195129
\(408\) 0 0
\(409\) −7.05957 −0.349073 −0.174537 0.984651i \(-0.555843\pi\)
−0.174537 + 0.984651i \(0.555843\pi\)
\(410\) 0 0
\(411\) −23.0473 −1.13684
\(412\) 0 0
\(413\) 5.68889 0.279932
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 23.3591 1.14390
\(418\) 0 0
\(419\) 10.5486 0.515331 0.257665 0.966234i \(-0.417047\pi\)
0.257665 + 0.966234i \(0.417047\pi\)
\(420\) 0 0
\(421\) −28.4902 −1.38853 −0.694265 0.719720i \(-0.744270\pi\)
−0.694265 + 0.719720i \(0.744270\pi\)
\(422\) 0 0
\(423\) 44.6946 2.17313
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.37779 0.357036
\(428\) 0 0
\(429\) −46.8524 −2.26206
\(430\) 0 0
\(431\) 39.1437 1.88549 0.942743 0.333520i \(-0.108237\pi\)
0.942743 + 0.333520i \(0.108237\pi\)
\(432\) 0 0
\(433\) 31.7932 1.52788 0.763941 0.645286i \(-0.223262\pi\)
0.763941 + 0.645286i \(0.223262\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.57580 −0.314563
\(438\) 0 0
\(439\) 35.1928 1.67966 0.839829 0.542851i \(-0.182655\pi\)
0.839829 + 0.542851i \(0.182655\pi\)
\(440\) 0 0
\(441\) −26.3463 −1.25459
\(442\) 0 0
\(443\) 17.7034 0.841112 0.420556 0.907267i \(-0.361835\pi\)
0.420556 + 0.907267i \(0.361835\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.381967 −0.0180664
\(448\) 0 0
\(449\) 4.44354 0.209704 0.104852 0.994488i \(-0.466563\pi\)
0.104852 + 0.994488i \(0.466563\pi\)
\(450\) 0 0
\(451\) 43.9338 2.06876
\(452\) 0 0
\(453\) −55.3829 −2.60211
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 33.2797 1.55676 0.778379 0.627795i \(-0.216042\pi\)
0.778379 + 0.627795i \(0.216042\pi\)
\(458\) 0 0
\(459\) 21.3386 0.996002
\(460\) 0 0
\(461\) −39.8440 −1.85572 −0.927860 0.372930i \(-0.878353\pi\)
−0.927860 + 0.372930i \(0.878353\pi\)
\(462\) 0 0
\(463\) −24.7274 −1.14918 −0.574590 0.818441i \(-0.694838\pi\)
−0.574590 + 0.818441i \(0.694838\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.47154 0.299467 0.149733 0.988726i \(-0.452158\pi\)
0.149733 + 0.988726i \(0.452158\pi\)
\(468\) 0 0
\(469\) 7.64974 0.353232
\(470\) 0 0
\(471\) −49.7127 −2.29064
\(472\) 0 0
\(473\) 30.0896 1.38352
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.47015 0.342035
\(478\) 0 0
\(479\) 0.658570 0.0300908 0.0150454 0.999887i \(-0.495211\pi\)
0.0150454 + 0.999887i \(0.495211\pi\)
\(480\) 0 0
\(481\) −3.30739 −0.150804
\(482\) 0 0
\(483\) −2.00000 −0.0910032
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.25703 0.283533 0.141767 0.989900i \(-0.454722\pi\)
0.141767 + 0.989900i \(0.454722\pi\)
\(488\) 0 0
\(489\) −8.57496 −0.387773
\(490\) 0 0
\(491\) 20.7309 0.935572 0.467786 0.883842i \(-0.345052\pi\)
0.467786 + 0.883842i \(0.345052\pi\)
\(492\) 0 0
\(493\) −51.3307 −2.31182
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.31930 −0.148891
\(498\) 0 0
\(499\) −22.4684 −1.00583 −0.502913 0.864337i \(-0.667738\pi\)
−0.502913 + 0.864337i \(0.667738\pi\)
\(500\) 0 0
\(501\) −27.4330 −1.22562
\(502\) 0 0
\(503\) −22.9499 −1.02328 −0.511642 0.859199i \(-0.670963\pi\)
−0.511642 + 0.859199i \(0.670963\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4.74018 0.210519
\(508\) 0 0
\(509\) −25.9369 −1.14963 −0.574816 0.818283i \(-0.694926\pi\)
−0.574816 + 0.818283i \(0.694926\pi\)
\(510\) 0 0
\(511\) 3.38505 0.149746
\(512\) 0 0
\(513\) 19.1516 0.845564
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −49.9604 −2.19726
\(518\) 0 0
\(519\) −48.3444 −2.12208
\(520\) 0 0
\(521\) −0.454522 −0.0199130 −0.00995648 0.999950i \(-0.503169\pi\)
−0.00995648 + 0.999950i \(0.503169\pi\)
\(522\) 0 0
\(523\) 6.23345 0.272570 0.136285 0.990670i \(-0.456484\pi\)
0.136285 + 0.990670i \(0.456484\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 32.4585 1.41392
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 31.0117 1.34579
\(532\) 0 0
\(533\) −36.9118 −1.59883
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.49219 −0.107546
\(538\) 0 0
\(539\) 29.4503 1.26852
\(540\) 0 0
\(541\) 35.3355 1.51919 0.759597 0.650394i \(-0.225396\pi\)
0.759597 + 0.650394i \(0.225396\pi\)
\(542\) 0 0
\(543\) 41.7008 1.78955
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −38.5047 −1.64634 −0.823171 0.567793i \(-0.807797\pi\)
−0.823171 + 0.567793i \(0.807797\pi\)
\(548\) 0 0
\(549\) 40.2183 1.71647
\(550\) 0 0
\(551\) −46.0698 −1.96264
\(552\) 0 0
\(553\) 9.06947 0.385673
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.6770 0.664255 0.332128 0.943234i \(-0.392234\pi\)
0.332128 + 0.943234i \(0.392234\pi\)
\(558\) 0 0
\(559\) −25.2803 −1.06924
\(560\) 0 0
\(561\) −89.2911 −3.76987
\(562\) 0 0
\(563\) −10.4596 −0.440821 −0.220410 0.975407i \(-0.570740\pi\)
−0.220410 + 0.975407i \(0.570740\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.39696 −0.142659
\(568\) 0 0
\(569\) −11.3148 −0.474342 −0.237171 0.971468i \(-0.576220\pi\)
−0.237171 + 0.971468i \(0.576220\pi\)
\(570\) 0 0
\(571\) −35.8363 −1.49970 −0.749852 0.661606i \(-0.769875\pi\)
−0.749852 + 0.661606i \(0.769875\pi\)
\(572\) 0 0
\(573\) 34.3543 1.43517
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −23.5305 −0.979586 −0.489793 0.871839i \(-0.662928\pi\)
−0.489793 + 0.871839i \(0.662928\pi\)
\(578\) 0 0
\(579\) −41.3769 −1.71957
\(580\) 0 0
\(581\) −8.93796 −0.370809
\(582\) 0 0
\(583\) −8.35026 −0.345832
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.2369 −0.876542 −0.438271 0.898843i \(-0.644409\pi\)
−0.438271 + 0.898843i \(0.644409\pi\)
\(588\) 0 0
\(589\) 29.1318 1.20035
\(590\) 0 0
\(591\) 24.6917 1.01568
\(592\) 0 0
\(593\) −12.9454 −0.531604 −0.265802 0.964028i \(-0.585637\pi\)
−0.265802 + 0.964028i \(0.585637\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 15.6889 0.642104
\(598\) 0 0
\(599\) −24.9536 −1.01958 −0.509788 0.860300i \(-0.670276\pi\)
−0.509788 + 0.860300i \(0.670276\pi\)
\(600\) 0 0
\(601\) −33.9365 −1.38430 −0.692149 0.721755i \(-0.743336\pi\)
−0.692149 + 0.721755i \(0.743336\pi\)
\(602\) 0 0
\(603\) 41.7008 1.69819
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8.66090 −0.351535 −0.175768 0.984432i \(-0.556241\pi\)
−0.175768 + 0.984432i \(0.556241\pi\)
\(608\) 0 0
\(609\) −14.0119 −0.567791
\(610\) 0 0
\(611\) 41.9752 1.69813
\(612\) 0 0
\(613\) −13.4503 −0.543254 −0.271627 0.962403i \(-0.587562\pi\)
−0.271627 + 0.962403i \(0.587562\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.880108 0.0354318 0.0177159 0.999843i \(-0.494361\pi\)
0.0177159 + 0.999843i \(0.494361\pi\)
\(618\) 0 0
\(619\) 16.1360 0.648560 0.324280 0.945961i \(-0.394878\pi\)
0.324280 + 0.945961i \(0.394878\pi\)
\(620\) 0 0
\(621\) −2.91244 −0.116872
\(622\) 0 0
\(623\) 2.90161 0.116250
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −80.1395 −3.20046
\(628\) 0 0
\(629\) −6.30321 −0.251325
\(630\) 0 0
\(631\) 40.3611 1.60675 0.803374 0.595474i \(-0.203036\pi\)
0.803374 + 0.595474i \(0.203036\pi\)
\(632\) 0 0
\(633\) −39.2245 −1.55903
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −24.7433 −0.980364
\(638\) 0 0
\(639\) −18.0944 −0.715802
\(640\) 0 0
\(641\) −9.34654 −0.369166 −0.184583 0.982817i \(-0.559093\pi\)
−0.184583 + 0.982817i \(0.559093\pi\)
\(642\) 0 0
\(643\) −1.51887 −0.0598985 −0.0299492 0.999551i \(-0.509535\pi\)
−0.0299492 + 0.999551i \(0.509535\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.8969 1.48988 0.744940 0.667132i \(-0.232478\pi\)
0.744940 + 0.667132i \(0.232478\pi\)
\(648\) 0 0
\(649\) −34.6654 −1.36073
\(650\) 0 0
\(651\) 8.86030 0.347263
\(652\) 0 0
\(653\) 29.6005 1.15836 0.579178 0.815201i \(-0.303374\pi\)
0.579178 + 0.815201i \(0.303374\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 18.4528 0.719913
\(658\) 0 0
\(659\) 19.0326 0.741406 0.370703 0.928751i \(-0.379117\pi\)
0.370703 + 0.928751i \(0.379117\pi\)
\(660\) 0 0
\(661\) −19.5257 −0.759461 −0.379730 0.925097i \(-0.623983\pi\)
−0.379730 + 0.925097i \(0.623983\pi\)
\(662\) 0 0
\(663\) 75.0196 2.91352
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.00595 0.271272
\(668\) 0 0
\(669\) 9.10999 0.352213
\(670\) 0 0
\(671\) −44.9567 −1.73553
\(672\) 0 0
\(673\) 20.6685 0.796711 0.398356 0.917231i \(-0.369581\pi\)
0.398356 + 0.917231i \(0.369581\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.9765 0.883058 0.441529 0.897247i \(-0.354436\pi\)
0.441529 + 0.897247i \(0.354436\pi\)
\(678\) 0 0
\(679\) 0.403467 0.0154836
\(680\) 0 0
\(681\) 62.3798 2.39040
\(682\) 0 0
\(683\) −19.8805 −0.760706 −0.380353 0.924841i \(-0.624197\pi\)
−0.380353 + 0.924841i \(0.624197\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −59.4016 −2.26631
\(688\) 0 0
\(689\) 7.01562 0.267274
\(690\) 0 0
\(691\) 29.3038 1.11477 0.557385 0.830254i \(-0.311805\pi\)
0.557385 + 0.830254i \(0.311805\pi\)
\(692\) 0 0
\(693\) −14.0658 −0.534314
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −70.3464 −2.66456
\(698\) 0 0
\(699\) −38.3038 −1.44878
\(700\) 0 0
\(701\) −11.9757 −0.452317 −0.226158 0.974091i \(-0.572617\pi\)
−0.226158 + 0.974091i \(0.572617\pi\)
\(702\) 0 0
\(703\) −5.65718 −0.213365
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.09236 0.0786913
\(708\) 0 0
\(709\) −45.8244 −1.72097 −0.860486 0.509474i \(-0.829840\pi\)
−0.860486 + 0.509474i \(0.829840\pi\)
\(710\) 0 0
\(711\) 49.4401 1.85415
\(712\) 0 0
\(713\) −4.43015 −0.165910
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −53.3571 −1.99266
\(718\) 0 0
\(719\) 14.6003 0.544498 0.272249 0.962227i \(-0.412233\pi\)
0.272249 + 0.962227i \(0.412233\pi\)
\(720\) 0 0
\(721\) −3.19354 −0.118934
\(722\) 0 0
\(723\) −51.3897 −1.91120
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.40376 0.126238 0.0631192 0.998006i \(-0.479895\pi\)
0.0631192 + 0.998006i \(0.479895\pi\)
\(728\) 0 0
\(729\) −41.7884 −1.54772
\(730\) 0 0
\(731\) −48.1791 −1.78197
\(732\) 0 0
\(733\) −5.41909 −0.200159 −0.100079 0.994979i \(-0.531910\pi\)
−0.100079 + 0.994979i \(0.531910\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −46.6139 −1.71704
\(738\) 0 0
\(739\) −0.235218 −0.00865265 −0.00432633 0.999991i \(-0.501377\pi\)
−0.00432633 + 0.999991i \(0.501377\pi\)
\(740\) 0 0
\(741\) 67.3307 2.47346
\(742\) 0 0
\(743\) 34.6660 1.27177 0.635886 0.771783i \(-0.280635\pi\)
0.635886 + 0.771783i \(0.280635\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −48.7232 −1.78269
\(748\) 0 0
\(749\) −4.27196 −0.156094
\(750\) 0 0
\(751\) 29.6697 1.08266 0.541332 0.840809i \(-0.317920\pi\)
0.541332 + 0.840809i \(0.317920\pi\)
\(752\) 0 0
\(753\) −41.0411 −1.49562
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 18.0119 0.654654 0.327327 0.944911i \(-0.393852\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(758\) 0 0
\(759\) 12.1870 0.442361
\(760\) 0 0
\(761\) 22.8700 0.829036 0.414518 0.910041i \(-0.363950\pi\)
0.414518 + 0.910041i \(0.363950\pi\)
\(762\) 0 0
\(763\) 6.52195 0.236111
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29.1248 1.05163
\(768\) 0 0
\(769\) 17.5336 0.632277 0.316138 0.948713i \(-0.397614\pi\)
0.316138 + 0.948713i \(0.397614\pi\)
\(770\) 0 0
\(771\) −58.9814 −2.12416
\(772\) 0 0
\(773\) −38.9760 −1.40187 −0.700935 0.713225i \(-0.747234\pi\)
−0.700935 + 0.713225i \(0.747234\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.72061 −0.0617264
\(778\) 0 0
\(779\) −63.1364 −2.26210
\(780\) 0 0
\(781\) 20.2262 0.723750
\(782\) 0 0
\(783\) −20.4044 −0.729194
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 15.6883 0.559226 0.279613 0.960113i \(-0.409794\pi\)
0.279613 + 0.960113i \(0.409794\pi\)
\(788\) 0 0
\(789\) 45.9014 1.63413
\(790\) 0 0
\(791\) −6.73176 −0.239354
\(792\) 0 0
\(793\) 37.7712 1.34129
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.2381 1.00024 0.500122 0.865955i \(-0.333288\pi\)
0.500122 + 0.865955i \(0.333288\pi\)
\(798\) 0 0
\(799\) 79.9961 2.83006
\(800\) 0 0
\(801\) 15.8174 0.558882
\(802\) 0 0
\(803\) −20.6269 −0.727906
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 48.3338 1.70143
\(808\) 0 0
\(809\) 9.99628 0.351451 0.175725 0.984439i \(-0.443773\pi\)
0.175725 + 0.984439i \(0.443773\pi\)
\(810\) 0 0
\(811\) 24.1624 0.848455 0.424227 0.905556i \(-0.360546\pi\)
0.424227 + 0.905556i \(0.360546\pi\)
\(812\) 0 0
\(813\) −72.9451 −2.55830
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −43.2412 −1.51282
\(818\) 0 0
\(819\) 11.8176 0.412941
\(820\) 0 0
\(821\) 43.7379 1.52646 0.763232 0.646124i \(-0.223611\pi\)
0.763232 + 0.646124i \(0.223611\pi\)
\(822\) 0 0
\(823\) 44.9031 1.56523 0.782613 0.622509i \(-0.213887\pi\)
0.782613 + 0.622509i \(0.213887\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.9573 −0.520117 −0.260058 0.965593i \(-0.583742\pi\)
−0.260058 + 0.965593i \(0.583742\pi\)
\(828\) 0 0
\(829\) 32.5965 1.13212 0.566062 0.824363i \(-0.308466\pi\)
0.566062 + 0.824363i \(0.308466\pi\)
\(830\) 0 0
\(831\) −68.5994 −2.37969
\(832\) 0 0
\(833\) −47.1556 −1.63385
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 12.9025 0.445977
\(838\) 0 0
\(839\) 24.8552 0.858097 0.429048 0.903282i \(-0.358849\pi\)
0.429048 + 0.903282i \(0.358849\pi\)
\(840\) 0 0
\(841\) 20.0834 0.692530
\(842\) 0 0
\(843\) −54.6258 −1.88141
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.46271 0.256422
\(848\) 0 0
\(849\) 53.6612 1.84165
\(850\) 0 0
\(851\) 0.860303 0.0294908
\(852\) 0 0
\(853\) 18.5639 0.635616 0.317808 0.948155i \(-0.397053\pi\)
0.317808 + 0.948155i \(0.397053\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8042 0.710659 0.355329 0.934741i \(-0.384369\pi\)
0.355329 + 0.934741i \(0.384369\pi\)
\(858\) 0 0
\(859\) 30.6563 1.04598 0.522990 0.852339i \(-0.324816\pi\)
0.522990 + 0.852339i \(0.324816\pi\)
\(860\) 0 0
\(861\) −19.2027 −0.654425
\(862\) 0 0
\(863\) 4.51949 0.153845 0.0769226 0.997037i \(-0.475491\pi\)
0.0769226 + 0.997037i \(0.475491\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 97.6949 3.31789
\(868\) 0 0
\(869\) −55.2650 −1.87474
\(870\) 0 0
\(871\) 39.1635 1.32700
\(872\) 0 0
\(873\) 2.19940 0.0744385
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −12.1391 −0.409907 −0.204953 0.978772i \(-0.565704\pi\)
−0.204953 + 0.978772i \(0.565704\pi\)
\(878\) 0 0
\(879\) −16.8603 −0.568684
\(880\) 0 0
\(881\) 31.9410 1.07612 0.538061 0.842906i \(-0.319157\pi\)
0.538061 + 0.842906i \(0.319157\pi\)
\(882\) 0 0
\(883\) 40.2605 1.35487 0.677437 0.735581i \(-0.263091\pi\)
0.677437 + 0.735581i \(0.263091\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.82734 −0.0613560 −0.0306780 0.999529i \(-0.509767\pi\)
−0.0306780 + 0.999529i \(0.509767\pi\)
\(888\) 0 0
\(889\) 0.323013 0.0108335
\(890\) 0 0
\(891\) 20.6994 0.693456
\(892\) 0 0
\(893\) 71.7972 2.40260
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −10.2392 −0.341876
\(898\) 0 0
\(899\) −31.0374 −1.03516
\(900\) 0 0
\(901\) 13.3704 0.445431
\(902\) 0 0
\(903\) −13.1516 −0.437658
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −14.6409 −0.486144 −0.243072 0.970008i \(-0.578155\pi\)
−0.243072 + 0.970008i \(0.578155\pi\)
\(908\) 0 0
\(909\) 11.4060 0.378314
\(910\) 0 0
\(911\) −20.3400 −0.673895 −0.336948 0.941523i \(-0.609395\pi\)
−0.336948 + 0.941523i \(0.609395\pi\)
\(912\) 0 0
\(913\) 54.4636 1.80248
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.1315 0.334572
\(918\) 0 0
\(919\) −1.93488 −0.0638259 −0.0319129 0.999491i \(-0.510160\pi\)
−0.0319129 + 0.999491i \(0.510160\pi\)
\(920\) 0 0
\(921\) −71.5705 −2.35833
\(922\) 0 0
\(923\) −16.9934 −0.559345
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −17.4089 −0.571782
\(928\) 0 0
\(929\) −43.4526 −1.42563 −0.712816 0.701351i \(-0.752581\pi\)
−0.712816 + 0.701351i \(0.752581\pi\)
\(930\) 0 0
\(931\) −42.3226 −1.38707
\(932\) 0 0
\(933\) −25.2993 −0.828261
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.2797 0.499166 0.249583 0.968353i \(-0.419707\pi\)
0.249583 + 0.968353i \(0.419707\pi\)
\(938\) 0 0
\(939\) −84.3781 −2.75357
\(940\) 0 0
\(941\) 38.2455 1.24677 0.623384 0.781916i \(-0.285757\pi\)
0.623384 + 0.781916i \(0.285757\pi\)
\(942\) 0 0
\(943\) 9.60133 0.312662
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −46.1746 −1.50047 −0.750236 0.661170i \(-0.770060\pi\)
−0.750236 + 0.661170i \(0.770060\pi\)
\(948\) 0 0
\(949\) 17.3300 0.562557
\(950\) 0 0
\(951\) 54.4387 1.76530
\(952\) 0 0
\(953\) −5.19865 −0.168401 −0.0842004 0.996449i \(-0.526834\pi\)
−0.0842004 + 0.996449i \(0.526834\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 85.3818 2.76000
\(958\) 0 0
\(959\) −6.49814 −0.209836
\(960\) 0 0
\(961\) −11.3738 −0.366895
\(962\) 0 0
\(963\) −23.2876 −0.750432
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −35.3163 −1.13569 −0.567847 0.823134i \(-0.692224\pi\)
−0.567847 + 0.823134i \(0.692224\pi\)
\(968\) 0 0
\(969\) 128.319 4.12219
\(970\) 0 0
\(971\) −10.3277 −0.331430 −0.165715 0.986174i \(-0.552993\pi\)
−0.165715 + 0.986174i \(0.552993\pi\)
\(972\) 0 0
\(973\) 6.58603 0.211138
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.5921 −0.754777 −0.377388 0.926055i \(-0.623178\pi\)
−0.377388 + 0.926055i \(0.623178\pi\)
\(978\) 0 0
\(979\) −17.6810 −0.565087
\(980\) 0 0
\(981\) 35.5529 1.13512
\(982\) 0 0
\(983\) −7.32610 −0.233666 −0.116833 0.993152i \(-0.537274\pi\)
−0.116833 + 0.993152i \(0.537274\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 21.8368 0.695072
\(988\) 0 0
\(989\) 6.57580 0.209098
\(990\) 0 0
\(991\) 61.8864 1.96589 0.982944 0.183906i \(-0.0588741\pi\)
0.982944 + 0.183906i \(0.0588741\pi\)
\(992\) 0 0
\(993\) −6.04449 −0.191816
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29.8960 0.946817 0.473408 0.880843i \(-0.343024\pi\)
0.473408 + 0.880843i \(0.343024\pi\)
\(998\) 0 0
\(999\) −2.50558 −0.0792730
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2300.2.a.m.1.4 yes 4
4.3 odd 2 9200.2.a.cm.1.1 4
5.2 odd 4 2300.2.c.j.1749.1 8
5.3 odd 4 2300.2.c.j.1749.8 8
5.4 even 2 2300.2.a.l.1.1 4
20.19 odd 2 9200.2.a.co.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2300.2.a.l.1.1 4 5.4 even 2
2300.2.a.m.1.4 yes 4 1.1 even 1 trivial
2300.2.c.j.1749.1 8 5.2 odd 4
2300.2.c.j.1749.8 8 5.3 odd 4
9200.2.a.cm.1.1 4 4.3 odd 2
9200.2.a.co.1.4 4 20.19 odd 2