Properties

Label 2300.2.a.m
Level $2300$
Weight $2$
Character orbit 2300.a
Self dual yes
Analytic conductor $18.366$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,2,Mod(1,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2300.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3655924649\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.53121.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{3} + \beta_1) q^{7} + (\beta_{2} + 1) q^{9} + ( - \beta_{3} - \beta_1) q^{11} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{13} + (2 \beta_1 + 2) q^{17} + (\beta_{3} + \beta_1 + 2) q^{19}+ \cdots + (\beta_{3} - 7 \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{7} + 2 q^{9} + q^{11} - q^{13} + 8 q^{17} + 7 q^{19} + 8 q^{21} - 4 q^{23} + 3 q^{27} - 5 q^{29} + 14 q^{31} - 20 q^{33} + 4 q^{37} + 11 q^{39} + 3 q^{41} - 7 q^{43} + 12 q^{47} + q^{49} + 28 q^{51}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 7x^{2} - x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 6\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 6\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.50653
−0.631352
0.474520
2.66337
0 −2.50653 0 0 0 −0.797915 0 3.28271 0
1.2 0 −0.631352 0 0 0 −3.16780 0 −2.60139 0
1.3 0 0.474520 0 0 0 4.21479 0 −2.77483 0
1.4 0 2.66337 0 0 0 0.750930 0 4.09352 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2300.2.a.m yes 4
4.b odd 2 1 9200.2.a.cm 4
5.b even 2 1 2300.2.a.l 4
5.c odd 4 2 2300.2.c.j 8
20.d odd 2 1 9200.2.a.co 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2300.2.a.l 4 5.b even 2 1
2300.2.a.m yes 4 1.a even 1 1 trivial
2300.2.c.j 8 5.c odd 4 2
9200.2.a.cm 4 4.b odd 2 1
9200.2.a.co 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2300))\):

\( T_{3}^{4} - 7T_{3}^{2} - T_{3} + 2 \) Copy content Toggle raw display
\( T_{7}^{4} - T_{7}^{3} - 14T_{7}^{2} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 7T^{2} - T + 2 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} - 14 T^{2} + 8 \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + \cdots + 120 \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} + \cdots - 17 \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{3} + \cdots - 48 \) Copy content Toggle raw display
$19$ \( T^{4} - 7 T^{3} + \cdots + 72 \) Copy content Toggle raw display
$23$ \( (T + 1)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 5 T^{3} + \cdots - 93 \) Copy content Toggle raw display
$31$ \( T^{4} - 14 T^{3} + \cdots - 10 \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 416 \) Copy content Toggle raw display
$41$ \( T^{4} - 3 T^{3} + \cdots + 381 \) Copy content Toggle raw display
$43$ \( T^{4} + 7 T^{3} + \cdots + 72 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots - 1242 \) Copy content Toggle raw display
$53$ \( T^{4} + 10 T^{3} + \cdots + 288 \) Copy content Toggle raw display
$59$ \( T^{4} - 11 T^{3} + \cdots + 12 \) Copy content Toggle raw display
$61$ \( T^{4} - 22 T^{3} + \cdots - 416 \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots + 992 \) Copy content Toggle raw display
$71$ \( T^{4} - 18 T^{3} + \cdots - 1800 \) Copy content Toggle raw display
$73$ \( T^{4} + 9 T^{3} + \cdots - 139 \) Copy content Toggle raw display
$79$ \( T^{4} - 25 T^{3} + \cdots + 40 \) Copy content Toggle raw display
$83$ \( T^{4} + 7 T^{3} + \cdots + 72 \) Copy content Toggle raw display
$89$ \( T^{4} - 236 T^{2} + \cdots - 3840 \) Copy content Toggle raw display
$97$ \( T^{4} - 8 T^{3} + \cdots - 1040 \) Copy content Toggle raw display
show more
show less