Properties

Label 2300.2
Level 2300
Weight 2
Dimension 83978
Nonzero newspaces 24
Sturm bound 633600
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(633600\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2300))\).

Total New Old
Modular forms 161480 85702 75778
Cusp forms 155321 83978 71343
Eisenstein series 6159 1724 4435

Trace form

\( 83978 q - 131 q^{2} - 8 q^{3} - 123 q^{4} - 322 q^{5} - 195 q^{6} + 8 q^{7} - 107 q^{8} - 242 q^{9} - 144 q^{10} - 123 q^{12} - 246 q^{13} - 123 q^{14} + 4 q^{15} - 227 q^{16} - 237 q^{17} - 147 q^{18}+ \cdots + 331 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2300))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2300.2.a \(\chi_{2300}(1, \cdot)\) 2300.2.a.a 1 1
2300.2.a.b 1
2300.2.a.c 1
2300.2.a.d 1
2300.2.a.e 1
2300.2.a.f 1
2300.2.a.g 1
2300.2.a.h 1
2300.2.a.i 2
2300.2.a.j 3
2300.2.a.k 3
2300.2.a.l 4
2300.2.a.m 4
2300.2.a.n 6
2300.2.a.o 6
2300.2.c \(\chi_{2300}(1749, \cdot)\) 2300.2.c.a 2 1
2300.2.c.b 2
2300.2.c.c 2
2300.2.c.d 2
2300.2.c.e 2
2300.2.c.f 2
2300.2.c.g 2
2300.2.c.h 4
2300.2.c.i 6
2300.2.c.j 8
2300.2.e \(\chi_{2300}(551, \cdot)\) n/a 222 1
2300.2.g \(\chi_{2300}(2299, \cdot)\) n/a 212 1
2300.2.i \(\chi_{2300}(1057, \cdot)\) 2300.2.i.a 8 2
2300.2.i.b 8
2300.2.i.c 8
2300.2.i.d 16
2300.2.i.e 16
2300.2.i.f 16
2300.2.j \(\chi_{2300}(507, \cdot)\) n/a 396 2
2300.2.m \(\chi_{2300}(461, \cdot)\) n/a 216 4
2300.2.n \(\chi_{2300}(459, \cdot)\) n/a 1424 4
2300.2.q \(\chi_{2300}(369, \cdot)\) n/a 224 4
2300.2.s \(\chi_{2300}(91, \cdot)\) n/a 1424 4
2300.2.u \(\chi_{2300}(101, \cdot)\) n/a 380 10
2300.2.x \(\chi_{2300}(47, \cdot)\) n/a 2640 8
2300.2.y \(\chi_{2300}(137, \cdot)\) n/a 480 8
2300.2.ba \(\chi_{2300}(99, \cdot)\) n/a 2120 10
2300.2.bc \(\chi_{2300}(51, \cdot)\) n/a 2220 10
2300.2.be \(\chi_{2300}(49, \cdot)\) n/a 360 10
2300.2.bi \(\chi_{2300}(243, \cdot)\) n/a 4240 20
2300.2.bj \(\chi_{2300}(57, \cdot)\) n/a 720 20
2300.2.bk \(\chi_{2300}(41, \cdot)\) n/a 2400 40
2300.2.bm \(\chi_{2300}(11, \cdot)\) n/a 14240 40
2300.2.bo \(\chi_{2300}(9, \cdot)\) n/a 2400 40
2300.2.br \(\chi_{2300}(19, \cdot)\) n/a 14240 40
2300.2.bs \(\chi_{2300}(17, \cdot)\) n/a 4800 80
2300.2.bt \(\chi_{2300}(3, \cdot)\) n/a 28480 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2300))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2300)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(230))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(460))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(575))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1150))\)\(^{\oplus 2}\)