Properties

Label 2300.1.bh.a.2043.2
Level $2300$
Weight $1$
Character 2300.2043
Analytic conductor $1.148$
Analytic rank $0$
Dimension $40$
Projective image $D_{22}$
CM discriminant -20
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,1,Mod(7,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.7"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(44)) chi = DirichletCharacter(H, H._module([22, 11, 38])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2300.bh (of order \(44\), degree \(20\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14784952906\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(2\) over \(\Q(\zeta_{44})\)
Coefficient field: \(\Q(\zeta_{88})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} - \cdots)\)

Embedding invariants

Embedding label 2043.2
Root \(-0.349464 + 0.936950i\) of defining polynomial
Character \(\chi\) \(=\) 2300.2043
Dual form 2300.1.bh.a.707.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.349464 - 0.936950i) q^{2} +(0.398174 - 0.729202i) q^{3} +(-0.755750 - 0.654861i) q^{4} +(-0.544078 - 0.627899i) q^{6} +(1.58479 + 1.18636i) q^{7} +(-0.877679 + 0.479249i) q^{8} +(0.167448 + 0.260554i) q^{9} +(-0.778446 + 0.290345i) q^{12} +(1.66538 - 1.07028i) q^{14} +(0.142315 + 0.989821i) q^{16} +(0.302643 - 0.0658360i) q^{18} +(1.49611 - 0.683252i) q^{21} +(-0.936950 - 0.349464i) q^{23} +0.830830i q^{24} +(1.08538 - 0.0776282i) q^{27} +(-0.420803 - 1.93440i) q^{28} +(1.27155 - 1.10181i) q^{29} +(0.977147 + 0.212565i) q^{32} +(0.0440780 - 0.306569i) q^{36} +(0.239446 + 0.153882i) q^{41} +(-0.117335 - 1.64056i) q^{42} +(-1.32661 - 0.724384i) q^{43} +(-0.654861 + 0.755750i) q^{46} +(-1.18971 - 1.18971i) q^{47} +(0.778446 + 0.290345i) q^{48} +(0.822373 + 2.80075i) q^{49} +(0.306569 - 1.04408i) q^{54} +(-1.95949 - 0.281733i) q^{56} +(-0.587976 - 1.57642i) q^{58} +(-0.425839 + 1.45027i) q^{61} +(-0.0437408 + 0.611576i) q^{63} +(0.540641 - 0.841254i) q^{64} +(-0.527938 - 0.196911i) q^{67} +(-0.627899 + 0.544078i) q^{69} +(-0.271836 - 0.148434i) q^{72} +(0.246902 - 0.540641i) q^{81} +(0.227858 - 0.170572i) q^{82} +(0.550588 + 0.119773i) q^{83} +(-1.57812 - 0.463379i) q^{84} +(-1.14231 + 0.989821i) q^{86} +(-0.297140 - 1.36593i) q^{87} +(-1.74557 + 0.512546i) q^{89} +(0.479249 + 0.877679i) q^{92} +(-1.53046 + 0.698939i) q^{94} +(0.544078 - 0.627899i) q^{96} +(2.91155 + 0.208238i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 8 q^{6} + 4 q^{16} - 12 q^{36} + 8 q^{41} - 4 q^{46} - 44 q^{56} + 20 q^{81} - 44 q^{86} + 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{15}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.349464 0.936950i 0.349464 0.936950i
\(3\) 0.398174 0.729202i 0.398174 0.729202i −0.599278 0.800541i \(-0.704545\pi\)
0.997452 + 0.0713392i \(0.0227273\pi\)
\(4\) −0.755750 0.654861i −0.755750 0.654861i
\(5\) 0 0
\(6\) −0.544078 0.627899i −0.544078 0.627899i
\(7\) 1.58479 + 1.18636i 1.58479 + 1.18636i 0.877679 + 0.479249i \(0.159091\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −0.877679 + 0.479249i −0.877679 + 0.479249i
\(9\) 0.167448 + 0.260554i 0.167448 + 0.260554i
\(10\) 0 0
\(11\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(12\) −0.778446 + 0.290345i −0.778446 + 0.290345i
\(13\) 0 0 −0.599278 0.800541i \(-0.704545\pi\)
0.599278 + 0.800541i \(0.295455\pi\)
\(14\) 1.66538 1.07028i 1.66538 1.07028i
\(15\) 0 0
\(16\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(17\) 0 0 −0.997452 0.0713392i \(-0.977273\pi\)
0.997452 + 0.0713392i \(0.0227273\pi\)
\(18\) 0.302643 0.0658360i 0.302643 0.0658360i
\(19\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(20\) 0 0
\(21\) 1.49611 0.683252i 1.49611 0.683252i
\(22\) 0 0
\(23\) −0.936950 0.349464i −0.936950 0.349464i
\(24\) 0.830830i 0.830830i
\(25\) 0 0
\(26\) 0 0
\(27\) 1.08538 0.0776282i 1.08538 0.0776282i
\(28\) −0.420803 1.93440i −0.420803 1.93440i
\(29\) 1.27155 1.10181i 1.27155 1.10181i 0.281733 0.959493i \(-0.409091\pi\)
0.989821 0.142315i \(-0.0454545\pi\)
\(30\) 0 0
\(31\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(32\) 0.977147 + 0.212565i 0.977147 + 0.212565i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.0440780 0.306569i 0.0440780 0.306569i
\(37\) 0 0 0.212565 0.977147i \(-0.431818\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i \(-0.272727\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(42\) −0.117335 1.64056i −0.117335 1.64056i
\(43\) −1.32661 0.724384i −1.32661 0.724384i −0.349464 0.936950i \(-0.613636\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(47\) −1.18971 1.18971i −1.18971 1.18971i −0.977147 0.212565i \(-0.931818\pi\)
−0.212565 0.977147i \(-0.568182\pi\)
\(48\) 0.778446 + 0.290345i 0.778446 + 0.290345i
\(49\) 0.822373 + 2.80075i 0.822373 + 2.80075i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.599278 0.800541i \(-0.295455\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(54\) 0.306569 1.04408i 0.306569 1.04408i
\(55\) 0 0
\(56\) −1.95949 0.281733i −1.95949 0.281733i
\(57\) 0 0
\(58\) −0.587976 1.57642i −0.587976 1.57642i
\(59\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(60\) 0 0
\(61\) −0.425839 + 1.45027i −0.425839 + 1.45027i 0.415415 + 0.909632i \(0.363636\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(62\) 0 0
\(63\) −0.0437408 + 0.611576i −0.0437408 + 0.611576i
\(64\) 0.540641 0.841254i 0.540641 0.841254i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.527938 0.196911i −0.527938 0.196911i 0.0713392 0.997452i \(-0.477273\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(68\) 0 0
\(69\) −0.627899 + 0.544078i −0.627899 + 0.544078i
\(70\) 0 0
\(71\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(72\) −0.271836 0.148434i −0.271836 0.148434i
\(73\) 0 0 −0.0713392 0.997452i \(-0.522727\pi\)
0.0713392 + 0.997452i \(0.477273\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(80\) 0 0
\(81\) 0.246902 0.540641i 0.246902 0.540641i
\(82\) 0.227858 0.170572i 0.227858 0.170572i
\(83\) 0.550588 + 0.119773i 0.550588 + 0.119773i 0.479249 0.877679i \(-0.340909\pi\)
0.0713392 + 0.997452i \(0.477273\pi\)
\(84\) −1.57812 0.463379i −1.57812 0.463379i
\(85\) 0 0
\(86\) −1.14231 + 0.989821i −1.14231 + 0.989821i
\(87\) −0.297140 1.36593i −0.297140 1.36593i
\(88\) 0 0
\(89\) −1.74557 + 0.512546i −1.74557 + 0.512546i −0.989821 0.142315i \(-0.954545\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.479249 + 0.877679i 0.479249 + 0.877679i
\(93\) 0 0
\(94\) −1.53046 + 0.698939i −1.53046 + 0.698939i
\(95\) 0 0
\(96\) 0.544078 0.627899i 0.544078 0.627899i
\(97\) 0 0 0.977147 0.212565i \(-0.0681818\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(98\) 2.91155 + 0.208238i 2.91155 + 0.208238i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.61435 1.03748i 1.61435 1.03748i 0.654861 0.755750i \(-0.272727\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(102\) 0 0
\(103\) −1.01311 + 0.377869i −1.01311 + 0.377869i −0.800541 0.599278i \(-0.795455\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.949018 + 0.518203i −0.949018 + 0.518203i −0.877679 0.479249i \(-0.840909\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(108\) −0.871114 0.652108i −0.871114 0.652108i
\(109\) −1.19136 1.37491i −1.19136 1.37491i −0.909632 0.415415i \(-0.863636\pi\)
−0.281733 0.959493i \(-0.590909\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.948742 + 1.73749i −0.948742 + 1.73749i
\(113\) 0 0 0.349464 0.936950i \(-0.386364\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.68251 −1.68251
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(122\) 1.21002 + 0.905808i 1.21002 + 0.905808i
\(123\) 0.207553 0.113332i 0.207553 0.113332i
\(124\) 0 0
\(125\) 0 0
\(126\) 0.557730 + 0.254707i 0.557730 + 0.254707i
\(127\) −1.79799 + 0.670617i −1.79799 + 0.670617i −0.800541 + 0.599278i \(0.795455\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(128\) −0.599278 0.800541i −0.599278 0.800541i
\(129\) −1.05645 + 0.678936i −1.05645 + 0.678936i
\(130\) 0 0
\(131\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.368991 + 0.425839i −0.368991 + 0.425839i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(138\) 0.290345 + 0.778446i 0.290345 + 0.778446i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −1.34125 + 0.393828i −1.34125 + 0.393828i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.234072 + 0.202824i −0.234072 + 0.202824i
\(145\) 0 0
\(146\) 0 0
\(147\) 2.36976 + 0.515509i 2.36976 + 0.515509i
\(148\) 0 0
\(149\) 0.449181 0.983568i 0.449181 0.983568i −0.540641 0.841254i \(-0.681818\pi\)
0.989821 0.142315i \(-0.0454545\pi\)
\(150\) 0 0
\(151\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.0713392 0.997452i \(-0.522727\pi\)
0.0713392 + 0.997452i \(0.477273\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.07028 1.66538i −1.07028 1.66538i
\(162\) −0.420270 0.420270i −0.420270 0.420270i
\(163\) 1.22714 + 0.457701i 1.22714 + 0.457701i 0.877679 0.479249i \(-0.159091\pi\)
0.349464 + 0.936950i \(0.386364\pi\)
\(164\) −0.0801894 0.273100i −0.0801894 0.273100i
\(165\) 0 0
\(166\) 0.304632 0.474017i 0.304632 0.474017i
\(167\) 0.0934345 1.30638i 0.0934345 1.30638i −0.707107 0.707107i \(-0.750000\pi\)
0.800541 0.599278i \(-0.204545\pi\)
\(168\) −0.985660 + 1.31669i −0.985660 + 1.31669i
\(169\) −0.281733 + 0.959493i −0.281733 + 0.959493i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.528215 + 1.41620i 0.528215 + 1.41620i
\(173\) 0 0 −0.349464 0.936950i \(-0.613636\pi\)
0.349464 + 0.936950i \(0.386364\pi\)
\(174\) −1.38365 0.198939i −1.38365 0.198939i
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −0.129785 + 1.81463i −0.129785 + 1.81463i
\(179\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(180\) 0 0
\(181\) −0.158746 0.540641i −0.158746 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0.887984 + 0.887984i 0.887984 + 0.887984i
\(184\) 0.989821 0.142315i 0.989821 0.142315i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.120029 + 1.67822i 0.120029 + 1.67822i
\(189\) 1.81219 + 1.16463i 1.81219 + 1.16463i
\(190\) 0 0
\(191\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(192\) −0.398174 0.729202i −0.398174 0.729202i
\(193\) 0 0 0.212565 0.977147i \(-0.431818\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.21259 2.65520i 1.21259 2.65520i
\(197\) 0 0 0.800541 0.599278i \(-0.204545\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(198\) 0 0
\(199\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(200\) 0 0
\(201\) −0.353799 + 0.306569i −0.353799 + 0.306569i
\(202\) −0.407910 1.87513i −0.407910 1.87513i
\(203\) 3.32228 0.237614i 3.32228 0.237614i
\(204\) 0 0
\(205\) 0 0
\(206\) 1.08128i 1.08128i
\(207\) −0.0658360 0.302643i −0.0658360 0.302643i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.153882 + 1.07028i 0.153882 + 1.07028i
\(215\) 0 0
\(216\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(217\) 0 0
\(218\) −1.70456 + 0.635768i −1.70456 + 0.635768i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.04849 0.784887i −1.04849 0.784887i −0.0713392 0.997452i \(-0.522727\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(224\) 1.29639 + 1.49611i 1.29639 + 1.49611i
\(225\) 0 0
\(226\) 0 0
\(227\) −0.518203 + 0.949018i −0.518203 + 0.949018i 0.479249 + 0.877679i \(0.340909\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(228\) 0 0
\(229\) 1.81926 1.81926 0.909632 0.415415i \(-0.136364\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.587976 + 1.57642i −0.587976 + 1.57642i
\(233\) 0 0 0.479249 0.877679i \(-0.340909\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(240\) 0 0
\(241\) 1.80075 + 0.822373i 1.80075 + 0.822373i 0.959493 + 0.281733i \(0.0909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(242\) 0.936950 0.349464i 0.936950 0.349464i
\(243\) 0.356181 + 0.475803i 0.356181 + 0.475803i
\(244\) 1.27155 0.817178i 1.27155 0.817178i
\(245\) 0 0
\(246\) −0.0336545 0.234072i −0.0336545 0.234072i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.306569 0.353799i 0.306569 0.353799i
\(250\) 0 0
\(251\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(252\) 0.433554 0.433554i 0.433554 0.433554i
\(253\) 0 0
\(254\) 1.91899i 1.91899i
\(255\) 0 0
\(256\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(257\) 0 0 0.997452 0.0713392i \(-0.0227273\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(258\) 0.266939 + 1.22710i 0.266939 + 1.22710i
\(259\) 0 0
\(260\) 0 0
\(261\) 0.500000 + 0.146813i 0.500000 + 0.146813i
\(262\) 0 0
\(263\) −1.21002 + 0.905808i −1.21002 + 0.905808i −0.997452 0.0713392i \(-0.977273\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.321292 + 1.47696i −0.321292 + 1.47696i
\(268\) 0.270040 + 0.494541i 0.270040 + 0.494541i
\(269\) −1.89945 + 0.273100i −1.89945 + 0.273100i −0.989821 0.142315i \(-0.954545\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(270\) 0 0
\(271\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0.830830 0.830830
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.817178 + 1.27155i −0.817178 + 1.27155i 0.142315 + 0.989821i \(0.454545\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(282\) −0.0997234 + 1.39432i −0.0997234 + 1.39432i
\(283\) 1.09024 1.45640i 1.09024 1.45640i 0.212565 0.977147i \(-0.431818\pi\)
0.877679 0.479249i \(-0.159091\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.196911 + 0.527938i 0.196911 + 0.527938i
\(288\) 0.108237 + 0.290193i 0.108237 + 0.290193i
\(289\) 0.989821 + 0.142315i 0.989821 + 0.142315i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.0713392 0.997452i \(-0.477273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(294\) 1.31115 2.04019i 1.31115 2.04019i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −0.764582 0.764582i −0.764582 0.764582i
\(299\) 0 0
\(300\) 0 0
\(301\) −1.24302 2.72183i −1.24302 2.72183i
\(302\) 0 0
\(303\) −0.113740 1.59029i −0.113740 1.59029i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.136408 0.249813i −0.136408 0.249813i 0.800541 0.599278i \(-0.204545\pi\)
−0.936950 + 0.349464i \(0.886364\pi\)
\(308\) 0 0
\(309\) −0.127850 + 0.889217i −0.127850 + 0.889217i
\(310\) 0 0
\(311\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(312\) 0 0
\(313\) 0 0 −0.977147 0.212565i \(-0.931818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.212565 0.977147i \(-0.568182\pi\)
0.212565 + 0.977147i \(0.431818\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0.898361i 0.898361i
\(322\) −1.93440 + 0.420803i −1.93440 + 0.420803i
\(323\) 0 0
\(324\) −0.540641 + 0.246902i −0.540641 + 0.246902i
\(325\) 0 0
\(326\) 0.857685 0.989821i 0.857685 0.989821i
\(327\) −1.47696 + 0.321292i −1.47696 + 0.321292i
\(328\) −0.283904 0.0203052i −0.283904 0.0203052i
\(329\) −0.474017 3.29686i −0.474017 3.29686i
\(330\) 0 0
\(331\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(332\) −0.337672 0.451077i −0.337672 0.451077i
\(333\) 0 0
\(334\) −1.19136 0.544078i −1.19136 0.544078i
\(335\) 0 0
\(336\) 0.889217 + 1.38365i 0.889217 + 1.38365i
\(337\) 0 0 0.877679 0.479249i \(-0.159091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(338\) 0.800541 + 0.599278i 0.800541 + 0.599278i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.32758 + 3.55938i −1.32758 + 3.55938i
\(344\) 1.51150 1.51150
\(345\) 0 0
\(346\) 0 0
\(347\) 0.670617 1.79799i 0.670617 1.79799i 0.0713392 0.997452i \(-0.477273\pi\)
0.599278 0.800541i \(-0.295455\pi\)
\(348\) −0.669931 + 1.22689i −0.669931 + 1.22689i
\(349\) 0.215109 + 0.186393i 0.215109 + 0.186393i 0.755750 0.654861i \(-0.227273\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.877679 0.479249i \(-0.159091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.65486 + 0.755750i 1.65486 + 0.755750i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(360\) 0 0
\(361\) −0.142315 0.989821i −0.142315 0.989821i
\(362\) −0.562029 0.0401971i −0.562029 0.0401971i
\(363\) 0.811843 0.176606i 0.811843 0.176606i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.14231 0.521678i 1.14231 0.521678i
\(367\) 0.398430 0.398430i 0.398430 0.398430i −0.479249 0.877679i \(-0.659091\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(368\) 0.212565 0.977147i 0.212565 0.977147i
\(369\) 0.0881559i 0.0881559i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.212565 0.977147i \(-0.568182\pi\)
0.212565 + 0.977147i \(0.431818\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.61435 + 0.474017i 1.61435 + 0.474017i
\(377\) 0 0
\(378\) 1.72449 1.29094i 1.72449 1.29094i
\(379\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(380\) 0 0
\(381\) −0.226900 + 1.57812i −0.226900 + 1.57812i
\(382\) 0 0
\(383\) 0.948742 + 1.73749i 0.948742 + 1.73749i 0.599278 + 0.800541i \(0.295455\pi\)
0.349464 + 0.936950i \(0.386364\pi\)
\(384\) −0.822373 + 0.118239i −0.822373 + 0.118239i
\(385\) 0 0
\(386\) 0 0
\(387\) −0.0333970 0.466951i −0.0333970 0.466951i
\(388\) 0 0
\(389\) −0.755750 1.65486i −0.755750 1.65486i −0.755750 0.654861i \(-0.772727\pi\)
1.00000i \(-0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.06403 2.06403i −2.06403 2.06403i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.0713392 0.997452i \(-0.477273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.557730 + 0.0801894i 0.557730 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(402\) 0.163599 + 0.438627i 0.163599 + 0.438627i
\(403\) 0 0
\(404\) −1.89945 0.273100i −1.89945 0.273100i
\(405\) 0 0
\(406\) 0.938384 3.19584i 0.938384 3.19584i
\(407\) 0 0
\(408\) 0 0
\(409\) 0.909632 1.41542i 0.909632 1.41542i 1.00000i \(-0.5\pi\)
0.909632 0.415415i \(-0.136364\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.01311 + 0.377869i 1.01311 + 0.377869i
\(413\) 0 0
\(414\) −0.306569 0.0440780i −0.306569 0.0440780i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(420\) 0 0
\(421\) −1.95949 + 0.281733i −1.95949 + 0.281733i −0.959493 + 0.281733i \(0.909091\pi\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0.110770 0.509200i 0.110770 0.509200i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.39540 + 1.79318i −2.39540 + 1.79318i
\(428\) 1.05657 + 0.229843i 1.05657 + 0.229843i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(432\) 0.231304 + 1.06329i 0.231304 + 1.06329i
\(433\) 0 0 0.997452 0.0713392i \(-0.0227273\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.81926i 1.81926i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(440\) 0 0
\(441\) −0.592042 + 0.683252i −0.592042 + 0.683252i
\(442\) 0 0
\(443\) −1.30638 0.0934345i −1.30638 0.0934345i −0.599278 0.800541i \(-0.704545\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(447\) −0.538368 0.719175i −0.538368 0.719175i
\(448\) 1.85483 0.691814i 1.85483 0.691814i
\(449\) −0.755750 0.345139i −0.755750 0.345139i 1.00000i \(-0.5\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.708089 + 0.817178i 0.708089 + 0.817178i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.479249 0.877679i \(-0.340909\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(458\) 0.635768 1.70456i 0.635768 1.70456i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(462\) 0 0
\(463\) −0.136408 + 0.249813i −0.136408 + 0.249813i −0.936950 0.349464i \(-0.886364\pi\)
0.800541 + 0.599278i \(0.204545\pi\)
\(464\) 1.27155 + 1.10181i 1.27155 + 1.10181i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.599278 0.800541i \(-0.295455\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(468\) 0 0
\(469\) −0.603063 0.938384i −0.603063 0.938384i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.39982 1.39982i 1.39982 1.39982i
\(483\) −1.64056 + 0.117335i −1.64056 + 0.117335i
\(484\) 1.00000i 1.00000i
\(485\) 0 0
\(486\) 0.570276 0.167448i 0.570276 0.167448i
\(487\) 0.283904 0.0203052i 0.283904 0.0203052i 0.0713392 0.997452i \(-0.477273\pi\)
0.212565 + 0.977147i \(0.431818\pi\)
\(488\) −0.321292 1.47696i −0.321292 1.47696i
\(489\) 0.822373 0.712591i 0.822373 0.712591i
\(490\) 0 0
\(491\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(492\) −0.231075 0.0502672i −0.231075 0.0502672i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.224357 0.410880i −0.224357 0.410880i
\(499\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(500\) 0 0
\(501\) −0.915415 0.588302i −0.915415 0.588302i
\(502\) 0 0
\(503\) 1.59673 + 0.871880i 1.59673 + 0.871880i 0.997452 + 0.0713392i \(0.0227273\pi\)
0.599278 + 0.800541i \(0.295455\pi\)
\(504\) −0.254707 0.557730i −0.254707 0.557730i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.587486 + 0.587486i 0.587486 + 0.587486i
\(508\) 1.79799 + 0.670617i 1.79799 + 0.670617i
\(509\) 0.368991 + 1.25667i 0.368991 + 1.25667i 0.909632 + 0.415415i \(0.136364\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.0713392 + 0.997452i −0.0713392 + 0.997452i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 1.24302 + 0.178719i 1.24302 + 0.178719i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.304632 1.03748i 0.304632 1.03748i −0.654861 0.755750i \(-0.727273\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(522\) 0.312289 0.417169i 0.312289 0.417169i
\(523\) 0.0401971 0.562029i 0.0401971 0.562029i −0.936950 0.349464i \(-0.886364\pi\)
0.977147 0.212565i \(-0.0681818\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.425839 + 1.45027i 0.425839 + 1.45027i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.755750 + 0.654861i 0.755750 + 0.654861i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 1.27155 + 0.817178i 1.27155 + 0.817178i
\(535\) 0 0
\(536\) 0.557730 0.0801894i 0.557730 0.0801894i
\(537\) 0 0
\(538\) −0.407910 + 1.87513i −0.407910 + 1.87513i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(542\) 0 0
\(543\) −0.457445 0.0995111i −0.457445 0.0995111i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.357643 + 1.64406i 0.357643 + 1.64406i 0.707107 + 0.707107i \(0.250000\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(548\) 0 0
\(549\) −0.449181 + 0.131891i −0.449181 + 0.131891i
\(550\) 0 0
\(551\) 0 0
\(552\) 0.290345 0.778446i 0.290345 0.778446i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.977147 0.212565i \(-0.0681818\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.905808 + 1.21002i 0.905808 + 1.21002i
\(563\) −1.85483 + 0.691814i −1.85483 + 0.691814i −0.877679 + 0.479249i \(0.840909\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(564\) 1.27155 + 0.580699i 1.27155 + 0.580699i
\(565\) 0 0
\(566\) −0.983568 1.53046i −0.983568 1.53046i
\(567\) 1.03268 0.563886i 1.03268 0.563886i
\(568\) 0 0
\(569\) −0.368991 0.425839i −0.368991 0.425839i 0.540641 0.841254i \(-0.318182\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(570\) 0 0
\(571\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.563465 0.563465
\(575\) 0 0
\(576\) 0.309721 0.309721
\(577\) 0 0 0.349464 0.936950i \(-0.386364\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(578\) 0.479249 0.877679i 0.479249 0.877679i
\(579\) 0 0
\(580\) 0 0
\(581\) 0.730471 + 0.843008i 0.730471 + 0.843008i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.22714 0.457701i 1.22714 0.457701i 0.349464 0.936950i \(-0.386364\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(588\) −1.45336 1.94146i −1.45336 1.94146i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.977147 0.212565i \(-0.0681818\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.983568 + 0.449181i −0.983568 + 0.449181i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(602\) −2.98460 + 0.213463i −2.98460 + 0.213463i
\(603\) −0.0370963 0.170529i −0.0370963 0.170529i
\(604\) 0 0
\(605\) 0 0
\(606\) −1.52977 0.449181i −1.52977 0.449181i
\(607\) −1.27979 0.278401i −1.27979 0.278401i −0.479249 0.877679i \(-0.659091\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(608\) 0 0
\(609\) 1.14958 2.51722i 1.14958 2.51722i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.479249 0.877679i \(-0.659091\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(614\) −0.281733 + 0.0405070i −0.281733 + 0.0405070i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.0713392 0.997452i \(-0.522727\pi\)
0.0713392 + 0.997452i \(0.477273\pi\)
\(618\) 0.788473 + 0.430539i 0.788473 + 0.430539i
\(619\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(620\) 0 0
\(621\) −1.04408 0.306569i −1.04408 0.306569i
\(622\) 0 0
\(623\) −3.37442 1.25859i −3.37442 1.25859i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.304632 + 1.03748i 0.304632 + 1.03748i 0.959493 + 0.281733i \(0.0909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(642\) 0.841719 + 0.313945i 0.841719 + 0.313945i
\(643\) 1.06879 + 1.06879i 1.06879 + 1.06879i 0.997452 + 0.0713392i \(0.0227273\pi\)
0.0713392 + 0.997452i \(0.477273\pi\)
\(644\) −0.281733 + 1.95949i −0.281733 + 1.95949i
\(645\) 0 0
\(646\) 0 0
\(647\) 1.68425 + 0.919672i 1.68425 + 0.919672i 0.977147 + 0.212565i \(0.0681818\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0.0424005 + 0.592837i 0.0424005 + 0.592837i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.627683 1.14952i −0.627683 1.14952i
\(653\) 0 0 0.212565 0.977147i \(-0.431818\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(654\) −0.215109 + 1.49611i −0.215109 + 1.49611i
\(655\) 0 0
\(656\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(657\) 0 0
\(658\) −3.25464 0.708005i −3.25464 0.708005i
\(659\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(660\) 0 0
\(661\) −0.817178 + 0.708089i −0.817178 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.540641 + 0.158746i −0.540641 + 0.158746i
\(665\) 0 0
\(666\) 0 0
\(667\) −1.57642 + 0.587976i −1.57642 + 0.587976i
\(668\) −0.926113 + 0.926113i −0.926113 + 0.926113i
\(669\) −0.989821 + 0.452036i −0.989821 + 0.452036i
\(670\) 0 0
\(671\) 0 0
\(672\) 1.60716 0.349616i 1.60716 0.349616i
\(673\) 0 0 −0.997452 0.0713392i \(-0.977273\pi\)
0.997452 + 0.0713392i \(0.0227273\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.841254 0.540641i 0.841254 0.540641i
\(677\) 0 0 −0.599278 0.800541i \(-0.704545\pi\)
0.599278 + 0.800541i \(0.295455\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.485691 + 0.755750i 0.485691 + 0.755750i
\(682\) 0 0
\(683\) 0.227858 + 0.170572i 0.227858 + 0.170572i 0.707107 0.707107i \(-0.250000\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.87102 + 2.48775i 2.87102 + 2.48775i
\(687\) 0.724384 1.32661i 0.724384 1.32661i
\(688\) 0.528215 1.41620i 0.528215 1.41620i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.45027 1.25667i −1.45027 1.25667i
\(695\) 0 0
\(696\) 0.915415 + 1.05645i 0.915415 + 1.05645i
\(697\) 0 0
\(698\) 0.249813 0.136408i 0.249813 0.136408i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.37491 0.627899i −1.37491 0.627899i −0.415415 0.909632i \(-0.636364\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.78923 + 0.271011i 3.78923 + 0.271011i
\(708\) 0 0
\(709\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.28641 1.28641i 1.28641 1.28641i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(720\) 0 0
\(721\) −2.05384 0.603063i −2.05384 0.603063i
\(722\) −0.977147 0.212565i −0.977147 0.212565i
\(723\) 1.31669 0.985660i 1.31669 0.985660i
\(724\) −0.234072 + 0.512546i −0.234072 + 0.512546i
\(725\) 0 0
\(726\) 0.118239 0.822373i 0.118239 0.822373i
\(727\) 0.229843 1.05657i 0.229843 1.05657i −0.707107 0.707107i \(-0.750000\pi\)
0.936950 0.349464i \(-0.113636\pi\)
\(728\) 0 0
\(729\) 1.07708 0.154861i 1.07708 0.154861i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.0895877 1.25260i −0.0895877 1.25260i
\(733\) 0 0 −0.877679 0.479249i \(-0.840909\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(734\) −0.234072 0.512546i −0.234072 0.512546i
\(735\) 0 0
\(736\) −0.841254 0.540641i −0.841254 0.540641i
\(737\) 0 0
\(738\) 0.0825977 + 0.0308073i 0.0825977 + 0.0308073i
\(739\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.647988 0.865611i 0.647988 0.865611i −0.349464 0.936950i \(-0.613636\pi\)
0.997452 + 0.0713392i \(0.0227273\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.0609875 + 0.163514i 0.0609875 + 0.163514i
\(748\) 0 0
\(749\) −2.11876 0.304632i −2.11876 0.304632i
\(750\) 0 0
\(751\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(752\) 1.00829 1.34692i 1.00829 1.34692i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.606897 2.06690i −0.606897 2.06690i
\(757\) 0 0 −0.936950 0.349464i \(-0.886364\pi\)
0.936950 + 0.349464i \(0.113636\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(762\) 1.39933 + 0.764091i 1.39933 + 0.764091i
\(763\) −0.256928 3.59232i −0.256928 3.59232i
\(764\) 0 0
\(765\) 0 0
\(766\) 1.95949 0.281733i 1.95949 0.281733i
\(767\) 0 0
\(768\) −0.176606 + 0.811843i −0.176606 + 0.811843i
\(769\) −0.215109 + 1.49611i −0.215109 + 1.49611i 0.540641 + 0.841254i \(0.318182\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.977147 0.212565i \(-0.931818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(774\) −0.449181 0.131891i −0.449181 0.131891i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −1.81463 + 0.129785i −1.81463 + 0.129785i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.29459 1.29459i 1.29459 1.29459i
\(784\) −2.65520 + 1.21259i −2.65520 + 1.21259i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.77769 0.386712i 1.77769 0.386712i 0.800541 0.599278i \(-0.204545\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(788\) 0 0
\(789\) 0.178719 + 1.24302i 0.178719 + 1.24302i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.877679 0.479249i \(-0.159091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.425839 0.368991i −0.425839 0.368991i
\(802\) 0.270040 0.494541i 0.270040 0.494541i
\(803\) 0 0
\(804\) 0.468144 0.468144
\(805\) 0 0
\(806\) 0 0
\(807\) −0.557169 + 1.49383i −0.557169 + 1.49383i
\(808\) −0.919672 + 1.68425i −0.919672 + 1.68425i
\(809\) −0.627899 0.544078i −0.627899 0.544078i 0.281733 0.959493i \(-0.409091\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(810\) 0 0
\(811\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(812\) −2.66641 1.99605i −2.66641 1.99605i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −1.00829 1.34692i −1.00829 1.34692i
\(819\) 0 0
\(820\) 0 0
\(821\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(822\) 0 0
\(823\) 0.278125 0.0605024i 0.278125 0.0605024i −0.0713392 0.997452i \(-0.522727\pi\)
0.349464 + 0.936950i \(0.386364\pi\)
\(824\) 0.708089 0.817178i 0.708089 0.817178i
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) −0.148434 + 0.271836i −0.148434 + 0.271836i
\(829\) 0.284630i 0.284630i 0.989821 + 0.142315i \(0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(840\) 0 0
\(841\) 0.260554 1.81219i 0.260554 1.81219i
\(842\) −0.420803 + 1.93440i −0.420803 + 1.93440i
\(843\) 0.601840 + 1.10219i 0.601840 + 1.10219i
\(844\) 0 0
\(845\) 0 0
\(846\) −0.438384 0.281733i −0.438384 0.281733i
\(847\) 0.141226 + 1.97460i 0.141226 + 1.97460i
\(848\) 0 0
\(849\) −0.627899 1.37491i −0.627899 1.37491i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.936950 0.349464i \(-0.886364\pi\)
0.936950 + 0.349464i \(0.113636\pi\)
\(854\) 0.843008 + 2.87102i 0.843008 + 2.87102i
\(855\) 0 0
\(856\) 0.584585 0.909632i 0.584585 0.909632i
\(857\) 0 0 0.0713392 0.997452i \(-0.477273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(858\) 0 0
\(859\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(860\) 0 0
\(861\) 0.463379 + 0.0666238i 0.463379 + 0.0666238i
\(862\) 0 0
\(863\) 0.0994679 + 0.266684i 0.0994679 + 0.266684i 0.977147 0.212565i \(-0.0681818\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(864\) 1.07708 + 0.154861i 1.07708 + 0.154861i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.497898 0.665114i 0.497898 0.665114i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.70456 + 0.635768i 1.70456 + 0.635768i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.877679 0.479249i \(-0.840909\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.557730 0.0801894i 0.557730 0.0801894i 0.142315 0.989821i \(-0.454545\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(882\) 0.433276 + 0.793486i 0.433276 + 0.793486i
\(883\) 0.176606 0.811843i 0.176606 0.811843i −0.800541 0.599278i \(-0.795455\pi\)
0.977147 0.212565i \(-0.0681818\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(887\) −0.665114 + 0.497898i −0.665114 + 0.497898i −0.877679 0.479249i \(-0.840909\pi\)
0.212565 + 0.977147i \(0.431818\pi\)
\(888\) 0 0
\(889\) −3.64502 1.07028i −3.64502 1.07028i
\(890\) 0 0
\(891\) 0 0
\(892\) 0.278401 + 1.27979i 0.278401 + 1.27979i
\(893\) 0 0
\(894\) −0.861971 + 0.253098i −0.861971 + 0.253098i
\(895\) 0 0
\(896\) 1.97964i 1.97964i
\(897\) 0 0
\(898\) −0.587486 + 0.587486i −0.587486 + 0.587486i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −2.47970 0.177352i −2.47970 0.177352i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.09024 1.45640i −1.09024 1.45640i −0.877679 0.479249i \(-0.840909\pi\)
−0.212565 0.977147i \(-0.568182\pi\)
\(908\) 1.01311 0.377869i 1.01311 0.377869i
\(909\) 0.540641 + 0.246902i 0.540641 + 0.246902i
\(910\) 0 0
\(911\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.37491 1.19136i −1.37491 1.19136i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −0.236479 −0.236479
\(922\) −0.290345 + 0.778446i −0.290345 + 0.778446i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(927\) −0.268098 0.200696i −0.268098 0.200696i
\(928\) 1.47670 0.806340i 1.47670 0.806340i
\(929\) 0.909632 + 1.41542i 0.909632 + 1.41542i 0.909632 + 0.415415i \(0.136364\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.997452 0.0713392i \(-0.977273\pi\)
0.997452 + 0.0713392i \(0.0227273\pi\)
\(938\) −1.08997 + 0.237108i −1.08997 + 0.237108i
\(939\) 0 0
\(940\) 0 0
\(941\) 1.37491 0.627899i 1.37491 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(942\) 0 0
\(943\) −0.170572 0.227858i −0.170572 0.227858i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.828713 0.0592707i 0.828713 0.0592707i 0.349464 0.936950i \(-0.386364\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.800541 0.599278i \(-0.204545\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(962\) 0 0
\(963\) −0.293931 0.160499i −0.293931 0.160499i
\(964\) −0.822373 1.80075i −0.822373 1.80075i
\(965\) 0 0
\(966\) −0.463379 + 1.57812i −0.463379 + 1.57812i
\(967\) −0.587486 0.587486i −0.587486 0.587486i 0.349464 0.936950i \(-0.386364\pi\)
−0.936950 + 0.349464i \(0.886364\pi\)
\(968\) −0.936950 0.349464i −0.936950 0.349464i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(972\) 0.0424005 0.592837i 0.0424005 0.592837i
\(973\) 0 0
\(974\) 0.0801894 0.273100i 0.0801894 0.273100i
\(975\) 0 0
\(976\) −1.49611 0.215109i −1.49611 0.215109i
\(977\) 0 0 −0.349464 0.936950i \(-0.613636\pi\)
0.349464 + 0.936950i \(0.386364\pi\)
\(978\) −0.380272 1.01955i −0.380272 1.01955i
\(979\) 0 0
\(980\) 0 0
\(981\) 0.158746 0.540641i 0.158746 0.540641i
\(982\) 0 0
\(983\) 0.129785 1.81463i 0.129785 1.81463i −0.349464 0.936950i \(-0.613636\pi\)
0.479249 0.877679i \(-0.340909\pi\)
\(984\) −0.127850 + 0.198939i −0.127850 + 0.198939i
\(985\) 0 0
\(986\) 0 0
\(987\) −2.59282 0.967072i −2.59282 0.967072i
\(988\) 0 0
\(989\) 0.989821 + 1.14231i 0.989821 + 1.14231i
\(990\) 0 0
\(991\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −0.463379 + 0.0666238i −0.463379 + 0.0666238i
\(997\) 0 0 −0.479249 0.877679i \(-0.659091\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2300.1.bh.a.2043.2 yes 40
4.3 odd 2 inner 2300.1.bh.a.2043.1 yes 40
5.2 odd 4 inner 2300.1.bh.a.1307.2 yes 40
5.3 odd 4 inner 2300.1.bh.a.1307.1 yes 40
5.4 even 2 inner 2300.1.bh.a.2043.1 yes 40
20.3 even 4 inner 2300.1.bh.a.1307.2 yes 40
20.7 even 4 inner 2300.1.bh.a.1307.1 yes 40
20.19 odd 2 CM 2300.1.bh.a.2043.2 yes 40
23.17 odd 22 inner 2300.1.bh.a.1443.1 yes 40
92.63 even 22 inner 2300.1.bh.a.1443.2 yes 40
115.17 even 44 inner 2300.1.bh.a.707.1 40
115.63 even 44 inner 2300.1.bh.a.707.2 yes 40
115.109 odd 22 inner 2300.1.bh.a.1443.2 yes 40
460.63 odd 44 inner 2300.1.bh.a.707.1 40
460.247 odd 44 inner 2300.1.bh.a.707.2 yes 40
460.339 even 22 inner 2300.1.bh.a.1443.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2300.1.bh.a.707.1 40 115.17 even 44 inner
2300.1.bh.a.707.1 40 460.63 odd 44 inner
2300.1.bh.a.707.2 yes 40 115.63 even 44 inner
2300.1.bh.a.707.2 yes 40 460.247 odd 44 inner
2300.1.bh.a.1307.1 yes 40 5.3 odd 4 inner
2300.1.bh.a.1307.1 yes 40 20.7 even 4 inner
2300.1.bh.a.1307.2 yes 40 5.2 odd 4 inner
2300.1.bh.a.1307.2 yes 40 20.3 even 4 inner
2300.1.bh.a.1443.1 yes 40 23.17 odd 22 inner
2300.1.bh.a.1443.1 yes 40 460.339 even 22 inner
2300.1.bh.a.1443.2 yes 40 92.63 even 22 inner
2300.1.bh.a.1443.2 yes 40 115.109 odd 22 inner
2300.1.bh.a.2043.1 yes 40 4.3 odd 2 inner
2300.1.bh.a.2043.1 yes 40 5.4 even 2 inner
2300.1.bh.a.2043.2 yes 40 1.1 even 1 trivial
2300.1.bh.a.2043.2 yes 40 20.19 odd 2 CM