Properties

Label 230.5.c.a
Level $230$
Weight $5$
Character orbit 230.c
Analytic conductor $23.775$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,5,Mod(229,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.229");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 230.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7750915093\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q - 384 q^{4} - 64 q^{6} - 1608 q^{9} + 3072 q^{16} + 512 q^{24} + 1488 q^{25} - 384 q^{26} - 2940 q^{29} + 4732 q^{31} + 2556 q^{35} + 12864 q^{36} + 2736 q^{39} + 828 q^{41} - 64 q^{46} + 32572 q^{49}+ \cdots - 4096 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
229.1 2.82843i 9.09812i −8.00000 −21.5641 + 12.6486i −25.7334 94.0651 22.6274i −1.77586 35.7757 + 60.9926i
229.2 2.82843i 9.09812i −8.00000 −21.5641 12.6486i −25.7334 94.0651 22.6274i −1.77586 35.7757 60.9926i
229.3 2.82843i 15.3728i −8.00000 −24.9424 + 1.69556i −43.4808 −85.1277 22.6274i −155.323 4.79578 + 70.5479i
229.4 2.82843i 15.3728i −8.00000 −24.9424 1.69556i −43.4808 −85.1277 22.6274i −155.323 4.79578 70.5479i
229.5 2.82843i 13.4757i −8.00000 20.1787 14.7587i 38.1149 78.6574 22.6274i −100.593 −41.7439 57.0741i
229.6 2.82843i 13.4757i −8.00000 20.1787 + 14.7587i 38.1149 78.6574 22.6274i −100.593 −41.7439 + 57.0741i
229.7 2.82843i 0.832711i −8.00000 19.4576 15.6972i −2.35526 66.8572 22.6274i 80.3066 −44.3985 55.0343i
229.8 2.82843i 0.832711i −8.00000 19.4576 + 15.6972i −2.35526 66.8572 22.6274i 80.3066 −44.3985 + 55.0343i
229.9 2.82843i 6.81504i −8.00000 6.15914 + 24.2294i 19.2758 68.2555 22.6274i 34.5552 68.5312 17.4207i
229.10 2.82843i 6.81504i −8.00000 6.15914 24.2294i 19.2758 68.2555 22.6274i 34.5552 68.5312 + 17.4207i
229.11 2.82843i 7.41746i −8.00000 23.4452 + 8.67897i 20.9797 −42.4567 22.6274i 25.9814 24.5478 66.3129i
229.12 2.82843i 7.41746i −8.00000 23.4452 8.67897i 20.9797 −42.4567 22.6274i 25.9814 24.5478 + 66.3129i
229.13 2.82843i 10.7328i −8.00000 12.7779 21.4878i 30.3568 −32.1609 22.6274i −34.1923 −60.7766 36.1415i
229.14 2.82843i 10.7328i −8.00000 12.7779 + 21.4878i 30.3568 −32.1609 22.6274i −34.1923 −60.7766 + 36.1415i
229.15 2.82843i 15.5407i −8.00000 22.6151 + 10.6563i 43.9558 −25.0660 22.6274i −160.514 30.1404 63.9653i
229.16 2.82843i 15.5407i −8.00000 22.6151 10.6563i 43.9558 −25.0660 22.6274i −160.514 30.1404 + 63.9653i
229.17 2.82843i 15.7740i −8.00000 −12.1414 21.8538i −44.6155 29.1236 22.6274i −167.818 −61.8118 + 34.3409i
229.18 2.82843i 15.7740i −8.00000 −12.1414 + 21.8538i −44.6155 29.1236 22.6274i −167.818 −61.8118 34.3409i
229.19 2.82843i 1.19309i −8.00000 −1.65984 24.9448i −3.37456 28.6899 22.6274i 79.5765 −70.5547 + 4.69474i
229.20 2.82843i 1.19309i −8.00000 −1.65984 + 24.9448i −3.37456 28.6899 22.6274i 79.5765 −70.5547 4.69474i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 229.48
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
23.b odd 2 1 inner
115.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.5.c.a 48
5.b even 2 1 inner 230.5.c.a 48
23.b odd 2 1 inner 230.5.c.a 48
115.c odd 2 1 inner 230.5.c.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.5.c.a 48 1.a even 1 1 trivial
230.5.c.a 48 5.b even 2 1 inner
230.5.c.a 48 23.b odd 2 1 inner
230.5.c.a 48 115.c odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(230, [\chi])\).