gp: [N,k,chi] = [230,4,Mod(31,230)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(230, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("230.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [70,-14,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{70} - 3 T_{3}^{69} + 111 T_{3}^{68} - 581 T_{3}^{67} + 10870 T_{3}^{66} - 41622 T_{3}^{65} + \cdots + 20\!\cdots\!96 \)
T3^70 - 3*T3^69 + 111*T3^68 - 581*T3^67 + 10870*T3^66 - 41622*T3^65 + 1082538*T3^64 - 182791*T3^63 + 98875439*T3^62 - 187925956*T3^61 + 6268006386*T3^60 - 23415538246*T3^59 + 430903113042*T3^58 - 2151715037416*T3^57 + 52091035506057*T3^56 - 45136142675923*T3^55 + 4647253956898488*T3^54 - 2105504518862240*T3^53 + 271218044830461817*T3^52 - 727215218430817361*T3^51 + 25790020335457890987*T3^50 - 54224289952319263040*T3^49 + 841961194665360234733*T3^48 - 700509398959128665111*T3^47 + 80652299689523041861477*T3^46 - 256049599841144410152789*T3^45 + 1767453680699886244814541*T3^44 - 88589867674638185589257*T3^43 + 165218561657192523528993572*T3^42 - 865398941546926464488100903*T3^41 + 8810393931311517090150060098*T3^40 - 50132433501286593485758911732*T3^39 + 517599582889596504233358893863*T3^38 - 2145720796559903004104837862933*T3^37 + 20787118755956327389142688635183*T3^36 - 71656139023668096162279482174427*T3^35 + 702988273429372718286489334613916*T3^34 - 3440604669385238778614816503820460*T3^33 + 29089670138484826447415086091167756*T3^32 - 100281071164007702189242791404342314*T3^31 + 671412146268214709076095850194788347*T3^30 - 1851352283325778632629767003866466393*T3^29 + 10648083995094550806034454253241339710*T3^28 - 18969432641381463534559967734867059742*T3^27 + 158908564583958600388361944113067516820*T3^26 - 215847184710302584160318516131510893376*T3^25 + 1390510673950030666975246982687324821341*T3^24 - 3292850758141779781489579963576878328313*T3^23 + 7422702007936825325876141833262712657699*T3^22 - 28305958280413922192002904871166299576649*T3^21 + 81902527363798841082542558407170459009345*T3^20 - 126580118029376932451120032974116720085293*T3^19 + 749129850686153790743469690681197411941114*T3^18 + 553577066989221059126957569073543187767830*T3^17 + 2236365903607640653893445691779038761677306*T3^16 + 8420446138086561008943744797662847908547386*T3^15 + 19965542275338160308960212974541376396093978*T3^14 + 23590922923329360100884679886824215635882503*T3^13 + 82479301423736511794204848459169666962336217*T3^12 + 209809103525510086547747862187080508433638864*T3^11 + 449778195128269266956293480525137550006558573*T3^10 + 272977184366504199205807616621717997325164036*T3^9 + 2031084273493228453297385165446389958839114508*T3^8 + 1849495197066922746632054072686605443666823336*T3^7 + 3829998065640050782146999942198736647956831312*T3^6 + 4429449671528025330021469392738550347072330048*T3^5 + 7453696336400035814954239725351457155563248768*T3^4 + 10644191845483053772486124020718319084715285248*T3^3 + 6425824122635595532846513717558438071883583488*T3^2 + 2832181255283226676701898126182993501763901440*T3 + 2096176681646274206874695317619542616817181696
acting on \(S_{4}^{\mathrm{new}}(230, [\chi])\).