gp: [N,k,chi] = [230,4,Mod(31,230)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(230, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("230.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [60,12,5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{60} - 5 T_{3}^{59} + 147 T_{3}^{58} - 487 T_{3}^{57} + 12168 T_{3}^{56} - 50910 T_{3}^{55} + \cdots + 92\!\cdots\!76 \)
T3^60 - 5*T3^59 + 147*T3^58 - 487*T3^57 + 12168*T3^56 - 50910*T3^55 + 979393*T3^54 + 700645*T3^53 + 35272540*T3^52 + 396221181*T3^51 + 2669871327*T3^50 + 7323389400*T3^49 + 347524476186*T3^48 - 1657461187739*T3^47 + 41459097078323*T3^46 + 7335164006709*T3^45 + 2469758643429531*T3^44 + 1132224875255661*T3^43 + 120759074076938658*T3^42 + 1003737394724207091*T3^41 + 11062405870547107780*T3^40 + 32864058352422002817*T3^39 + 227282488736824095708*T3^38 + 831361132552508463361*T3^37 + 16583500724002874181270*T3^36 + 63763468258924791800840*T3^35 + 783314698356101299601659*T3^34 + 1569723072446556078376392*T3^33 + 16889440693211132107416531*T3^32 - 33812261576152998953735432*T3^31 + 271676029847583876588842749*T3^30 - 1572016850837400706687655304*T3^29 + 13689618080600273502162181516*T3^28 - 6949006773066429502686035139*T3^27 + 600664495044612438899547931175*T3^26 + 758860589216243615011104298162*T3^25 + 14839306902777850705562247685271*T3^24 + 15826926600076939642622812862217*T3^23 + 258882484267185026417070488683150*T3^22 + 92667077625269981146450974436455*T3^21 + 3752601480485902952274210930902510*T3^20 - 346694997257558191304712649737741*T3^19 + 45427712476732518586678588812089308*T3^18 - 23717343933635973632564043339122811*T3^17 + 438180491793389441106415070326220497*T3^16 - 404722936933810559131767312877487546*T3^15 + 3734283397966544124338059285823776529*T3^14 - 1171361902346711627381712059765009380*T3^13 + 21302299472502771673348711026149172370*T3^12 - 18915926916753492517745908760230455744*T3^11 + 33584684810430717028455304176617002105*T3^10 - 75251750499076130046385376709693969620*T3^9 + 142301222383200192852176963713268882292*T3^8 + 1466377447118115236889552321384408222264*T3^7 + 2977721349804991640644157779790548199536*T3^6 + 13016275105744674720098604211491241576704*T3^5 + 39713179086347351751200750668757028818304*T3^4 + 51718383122476120915080691989762119812864*T3^3 + 27113421133489876236379577750608693760512*T3^2 + 1439534602437331538328232065857841146880*T3 + 92805086571298987490503771441098597376
acting on \(S_{4}^{\mathrm{new}}(230, [\chi])\).