Properties

Label 230.4.a.j.1.4
Level $230$
Weight $4$
Character 230.1
Self dual yes
Analytic conductor $13.570$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,4,Mod(1,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.5704393013\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 60x^{2} - 45x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-6.12571\) of defining polynomial
Character \(\chi\) \(=\) 230.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +10.1257 q^{3} +4.00000 q^{4} +5.00000 q^{5} +20.2514 q^{6} -24.6431 q^{7} +8.00000 q^{8} +75.5301 q^{9} +10.0000 q^{10} -17.3867 q^{11} +40.5029 q^{12} +4.00699 q^{13} -49.2862 q^{14} +50.6286 q^{15} +16.0000 q^{16} +48.2740 q^{17} +151.060 q^{18} +79.3172 q^{19} +20.0000 q^{20} -249.529 q^{21} -34.7734 q^{22} -23.0000 q^{23} +81.0057 q^{24} +25.0000 q^{25} +8.01398 q^{26} +491.402 q^{27} -98.5723 q^{28} -254.267 q^{29} +101.257 q^{30} -220.696 q^{31} +32.0000 q^{32} -176.053 q^{33} +96.5480 q^{34} -123.215 q^{35} +302.120 q^{36} -422.904 q^{37} +158.634 q^{38} +40.5736 q^{39} +40.0000 q^{40} -170.251 q^{41} -499.058 q^{42} -228.920 q^{43} -69.5468 q^{44} +377.650 q^{45} -46.0000 q^{46} +580.087 q^{47} +162.011 q^{48} +264.282 q^{49} +50.0000 q^{50} +488.809 q^{51} +16.0280 q^{52} -260.354 q^{53} +982.803 q^{54} -86.9335 q^{55} -197.145 q^{56} +803.144 q^{57} -508.535 q^{58} +353.130 q^{59} +202.514 q^{60} -80.6108 q^{61} -441.392 q^{62} -1861.29 q^{63} +64.0000 q^{64} +20.0349 q^{65} -352.106 q^{66} -820.011 q^{67} +193.096 q^{68} -232.891 q^{69} -246.431 q^{70} +614.845 q^{71} +604.241 q^{72} +511.586 q^{73} -845.808 q^{74} +253.143 q^{75} +317.269 q^{76} +428.462 q^{77} +81.1472 q^{78} +160.464 q^{79} +80.0000 q^{80} +2936.48 q^{81} -340.502 q^{82} -32.5646 q^{83} -998.115 q^{84} +241.370 q^{85} -457.840 q^{86} -2574.64 q^{87} -139.094 q^{88} -25.0375 q^{89} +755.301 q^{90} -98.7445 q^{91} -92.0000 q^{92} -2234.70 q^{93} +1160.17 q^{94} +396.586 q^{95} +324.023 q^{96} -249.798 q^{97} +528.563 q^{98} -1313.22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 14 q^{3} + 16 q^{4} + 20 q^{5} + 28 q^{6} + 8 q^{7} + 32 q^{8} + 64 q^{9} + 40 q^{10} + 21 q^{11} + 56 q^{12} + 70 q^{13} + 16 q^{14} + 70 q^{15} + 64 q^{16} + 56 q^{17} + 128 q^{18} + 173 q^{19}+ \cdots - 2745 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 10.1257 1.94869 0.974347 0.225050i \(-0.0722546\pi\)
0.974347 + 0.225050i \(0.0722546\pi\)
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 20.2514 1.37794
\(7\) −24.6431 −1.33060 −0.665301 0.746575i \(-0.731697\pi\)
−0.665301 + 0.746575i \(0.731697\pi\)
\(8\) 8.00000 0.353553
\(9\) 75.5301 2.79741
\(10\) 10.0000 0.316228
\(11\) −17.3867 −0.476572 −0.238286 0.971195i \(-0.576586\pi\)
−0.238286 + 0.971195i \(0.576586\pi\)
\(12\) 40.5029 0.974347
\(13\) 4.00699 0.0854876 0.0427438 0.999086i \(-0.486390\pi\)
0.0427438 + 0.999086i \(0.486390\pi\)
\(14\) −49.2862 −0.940877
\(15\) 50.6286 0.871483
\(16\) 16.0000 0.250000
\(17\) 48.2740 0.688716 0.344358 0.938838i \(-0.388097\pi\)
0.344358 + 0.938838i \(0.388097\pi\)
\(18\) 151.060 1.97807
\(19\) 79.3172 0.957717 0.478859 0.877892i \(-0.341051\pi\)
0.478859 + 0.877892i \(0.341051\pi\)
\(20\) 20.0000 0.223607
\(21\) −249.529 −2.59294
\(22\) −34.7734 −0.336987
\(23\) −23.0000 −0.208514
\(24\) 81.0057 0.688968
\(25\) 25.0000 0.200000
\(26\) 8.01398 0.0604488
\(27\) 491.402 3.50260
\(28\) −98.5723 −0.665301
\(29\) −254.267 −1.62815 −0.814074 0.580761i \(-0.802755\pi\)
−0.814074 + 0.580761i \(0.802755\pi\)
\(30\) 101.257 0.616231
\(31\) −220.696 −1.27865 −0.639325 0.768937i \(-0.720786\pi\)
−0.639325 + 0.768937i \(0.720786\pi\)
\(32\) 32.0000 0.176777
\(33\) −176.053 −0.928693
\(34\) 96.5480 0.486996
\(35\) −123.215 −0.595063
\(36\) 302.120 1.39870
\(37\) −422.904 −1.87905 −0.939527 0.342476i \(-0.888735\pi\)
−0.939527 + 0.342476i \(0.888735\pi\)
\(38\) 158.634 0.677208
\(39\) 40.5736 0.166589
\(40\) 40.0000 0.158114
\(41\) −170.251 −0.648505 −0.324252 0.945971i \(-0.605113\pi\)
−0.324252 + 0.945971i \(0.605113\pi\)
\(42\) −499.058 −1.83348
\(43\) −228.920 −0.811860 −0.405930 0.913904i \(-0.633052\pi\)
−0.405930 + 0.913904i \(0.633052\pi\)
\(44\) −69.5468 −0.238286
\(45\) 377.650 1.25104
\(46\) −46.0000 −0.147442
\(47\) 580.087 1.80031 0.900154 0.435572i \(-0.143454\pi\)
0.900154 + 0.435572i \(0.143454\pi\)
\(48\) 162.011 0.487174
\(49\) 264.282 0.770500
\(50\) 50.0000 0.141421
\(51\) 488.809 1.34210
\(52\) 16.0280 0.0427438
\(53\) −260.354 −0.674762 −0.337381 0.941368i \(-0.609541\pi\)
−0.337381 + 0.941368i \(0.609541\pi\)
\(54\) 982.803 2.47671
\(55\) −86.9335 −0.213129
\(56\) −197.145 −0.470439
\(57\) 803.144 1.86630
\(58\) −508.535 −1.15127
\(59\) 353.130 0.779215 0.389607 0.920981i \(-0.372611\pi\)
0.389607 + 0.920981i \(0.372611\pi\)
\(60\) 202.514 0.435741
\(61\) −80.6108 −0.169199 −0.0845996 0.996415i \(-0.526961\pi\)
−0.0845996 + 0.996415i \(0.526961\pi\)
\(62\) −441.392 −0.904142
\(63\) −1861.29 −3.72224
\(64\) 64.0000 0.125000
\(65\) 20.0349 0.0382312
\(66\) −352.106 −0.656685
\(67\) −820.011 −1.49523 −0.747614 0.664133i \(-0.768801\pi\)
−0.747614 + 0.664133i \(0.768801\pi\)
\(68\) 193.096 0.344358
\(69\) −232.891 −0.406331
\(70\) −246.431 −0.420773
\(71\) 614.845 1.02773 0.513864 0.857872i \(-0.328214\pi\)
0.513864 + 0.857872i \(0.328214\pi\)
\(72\) 604.241 0.989034
\(73\) 511.586 0.820228 0.410114 0.912034i \(-0.365489\pi\)
0.410114 + 0.912034i \(0.365489\pi\)
\(74\) −845.808 −1.32869
\(75\) 253.143 0.389739
\(76\) 317.269 0.478859
\(77\) 428.462 0.634127
\(78\) 81.1472 0.117796
\(79\) 160.464 0.228526 0.114263 0.993451i \(-0.463549\pi\)
0.114263 + 0.993451i \(0.463549\pi\)
\(80\) 80.0000 0.111803
\(81\) 2936.48 4.02809
\(82\) −340.502 −0.458562
\(83\) −32.5646 −0.0430654 −0.0215327 0.999768i \(-0.506855\pi\)
−0.0215327 + 0.999768i \(0.506855\pi\)
\(84\) −998.115 −1.29647
\(85\) 241.370 0.308003
\(86\) −457.840 −0.574072
\(87\) −2574.64 −3.17276
\(88\) −139.094 −0.168494
\(89\) −25.0375 −0.0298199 −0.0149100 0.999889i \(-0.504746\pi\)
−0.0149100 + 0.999889i \(0.504746\pi\)
\(90\) 755.301 0.884619
\(91\) −98.7445 −0.113750
\(92\) −92.0000 −0.104257
\(93\) −2234.70 −2.49170
\(94\) 1160.17 1.27301
\(95\) 396.586 0.428304
\(96\) 324.023 0.344484
\(97\) −249.798 −0.261476 −0.130738 0.991417i \(-0.541735\pi\)
−0.130738 + 0.991417i \(0.541735\pi\)
\(98\) 528.563 0.544826
\(99\) −1313.22 −1.33317
\(100\) 100.000 0.100000
\(101\) 620.493 0.611300 0.305650 0.952144i \(-0.401126\pi\)
0.305650 + 0.952144i \(0.401126\pi\)
\(102\) 977.618 0.949006
\(103\) 1473.24 1.40935 0.704673 0.709532i \(-0.251094\pi\)
0.704673 + 0.709532i \(0.251094\pi\)
\(104\) 32.0559 0.0302244
\(105\) −1247.64 −1.15960
\(106\) −520.708 −0.477129
\(107\) −940.141 −0.849410 −0.424705 0.905332i \(-0.639622\pi\)
−0.424705 + 0.905332i \(0.639622\pi\)
\(108\) 1965.61 1.75130
\(109\) −636.264 −0.559111 −0.279555 0.960130i \(-0.590187\pi\)
−0.279555 + 0.960130i \(0.590187\pi\)
\(110\) −173.867 −0.150705
\(111\) −4282.20 −3.66170
\(112\) −394.289 −0.332650
\(113\) 832.451 0.693013 0.346506 0.938048i \(-0.387368\pi\)
0.346506 + 0.938048i \(0.387368\pi\)
\(114\) 1606.29 1.31967
\(115\) −115.000 −0.0932505
\(116\) −1017.07 −0.814074
\(117\) 302.648 0.239144
\(118\) 706.261 0.550988
\(119\) −1189.62 −0.916406
\(120\) 405.029 0.308116
\(121\) −1028.70 −0.772879
\(122\) −161.222 −0.119642
\(123\) −1723.91 −1.26374
\(124\) −882.783 −0.639325
\(125\) 125.000 0.0894427
\(126\) −3722.59 −2.63202
\(127\) 1614.60 1.12813 0.564067 0.825729i \(-0.309236\pi\)
0.564067 + 0.825729i \(0.309236\pi\)
\(128\) 128.000 0.0883883
\(129\) −2317.98 −1.58207
\(130\) 40.0699 0.0270335
\(131\) −1974.56 −1.31693 −0.658464 0.752612i \(-0.728794\pi\)
−0.658464 + 0.752612i \(0.728794\pi\)
\(132\) −704.211 −0.464346
\(133\) −1954.62 −1.27434
\(134\) −1640.02 −1.05729
\(135\) 2457.01 1.56641
\(136\) 386.192 0.243498
\(137\) 753.805 0.470087 0.235044 0.971985i \(-0.424477\pi\)
0.235044 + 0.971985i \(0.424477\pi\)
\(138\) −465.783 −0.287319
\(139\) 1014.10 0.618810 0.309405 0.950930i \(-0.399870\pi\)
0.309405 + 0.950930i \(0.399870\pi\)
\(140\) −492.862 −0.297532
\(141\) 5873.80 3.50825
\(142\) 1229.69 0.726714
\(143\) −69.6683 −0.0407410
\(144\) 1208.48 0.699352
\(145\) −1271.34 −0.728130
\(146\) 1023.17 0.579989
\(147\) 2676.04 1.50147
\(148\) −1691.62 −0.939527
\(149\) −2771.80 −1.52399 −0.761995 0.647583i \(-0.775780\pi\)
−0.761995 + 0.647583i \(0.775780\pi\)
\(150\) 506.286 0.275587
\(151\) 3108.62 1.67534 0.837668 0.546180i \(-0.183918\pi\)
0.837668 + 0.546180i \(0.183918\pi\)
\(152\) 634.538 0.338604
\(153\) 3646.14 1.92662
\(154\) 856.924 0.448396
\(155\) −1103.48 −0.571830
\(156\) 162.294 0.0832946
\(157\) 3712.87 1.88739 0.943693 0.330822i \(-0.107326\pi\)
0.943693 + 0.330822i \(0.107326\pi\)
\(158\) 320.928 0.161593
\(159\) −2636.27 −1.31490
\(160\) 160.000 0.0790569
\(161\) 566.791 0.277450
\(162\) 5872.96 2.84829
\(163\) 915.791 0.440063 0.220032 0.975493i \(-0.429384\pi\)
0.220032 + 0.975493i \(0.429384\pi\)
\(164\) −681.003 −0.324252
\(165\) −880.264 −0.415324
\(166\) −65.1292 −0.0304518
\(167\) 1432.32 0.663688 0.331844 0.943334i \(-0.392329\pi\)
0.331844 + 0.943334i \(0.392329\pi\)
\(168\) −1996.23 −0.916741
\(169\) −2180.94 −0.992692
\(170\) 482.740 0.217791
\(171\) 5990.84 2.67913
\(172\) −915.680 −0.405930
\(173\) −3479.54 −1.52916 −0.764580 0.644529i \(-0.777054\pi\)
−0.764580 + 0.644529i \(0.777054\pi\)
\(174\) −5149.28 −2.24348
\(175\) −616.077 −0.266120
\(176\) −278.187 −0.119143
\(177\) 3575.70 1.51845
\(178\) −50.0751 −0.0210859
\(179\) 3642.71 1.52105 0.760527 0.649307i \(-0.224941\pi\)
0.760527 + 0.649307i \(0.224941\pi\)
\(180\) 1510.60 0.625520
\(181\) 2409.15 0.989342 0.494671 0.869080i \(-0.335289\pi\)
0.494671 + 0.869080i \(0.335289\pi\)
\(182\) −197.489 −0.0804333
\(183\) −816.241 −0.329717
\(184\) −184.000 −0.0737210
\(185\) −2114.52 −0.840338
\(186\) −4469.41 −1.76190
\(187\) −839.326 −0.328223
\(188\) 2320.35 0.900154
\(189\) −12109.6 −4.66057
\(190\) 793.172 0.302857
\(191\) −189.608 −0.0718299 −0.0359150 0.999355i \(-0.511435\pi\)
−0.0359150 + 0.999355i \(0.511435\pi\)
\(192\) 648.046 0.243587
\(193\) −1855.45 −0.692012 −0.346006 0.938232i \(-0.612462\pi\)
−0.346006 + 0.938232i \(0.612462\pi\)
\(194\) −499.597 −0.184891
\(195\) 202.868 0.0745009
\(196\) 1057.13 0.385250
\(197\) 2429.85 0.878779 0.439390 0.898297i \(-0.355195\pi\)
0.439390 + 0.898297i \(0.355195\pi\)
\(198\) −2626.44 −0.942691
\(199\) 4333.49 1.54368 0.771842 0.635815i \(-0.219336\pi\)
0.771842 + 0.635815i \(0.219336\pi\)
\(200\) 200.000 0.0707107
\(201\) −8303.20 −2.91374
\(202\) 1240.99 0.432255
\(203\) 6265.94 2.16642
\(204\) 1955.24 0.671048
\(205\) −851.254 −0.290020
\(206\) 2946.48 0.996558
\(207\) −1737.19 −0.583300
\(208\) 64.1118 0.0213719
\(209\) −1379.07 −0.456421
\(210\) −2495.29 −0.819958
\(211\) −816.788 −0.266493 −0.133247 0.991083i \(-0.542540\pi\)
−0.133247 + 0.991083i \(0.542540\pi\)
\(212\) −1041.42 −0.337381
\(213\) 6225.75 2.00273
\(214\) −1880.28 −0.600624
\(215\) −1144.60 −0.363075
\(216\) 3931.21 1.23836
\(217\) 5438.63 1.70137
\(218\) −1272.53 −0.395351
\(219\) 5180.18 1.59837
\(220\) −347.734 −0.106565
\(221\) 193.433 0.0588767
\(222\) −8564.41 −2.58921
\(223\) −4513.80 −1.35546 −0.677728 0.735313i \(-0.737035\pi\)
−0.677728 + 0.735313i \(0.737035\pi\)
\(224\) −788.579 −0.235219
\(225\) 1888.25 0.559482
\(226\) 1664.90 0.490034
\(227\) 2792.85 0.816599 0.408300 0.912848i \(-0.366122\pi\)
0.408300 + 0.912848i \(0.366122\pi\)
\(228\) 3212.57 0.933149
\(229\) 1404.50 0.405292 0.202646 0.979252i \(-0.435046\pi\)
0.202646 + 0.979252i \(0.435046\pi\)
\(230\) −230.000 −0.0659380
\(231\) 4338.48 1.23572
\(232\) −2034.14 −0.575637
\(233\) 1073.79 0.301916 0.150958 0.988540i \(-0.451764\pi\)
0.150958 + 0.988540i \(0.451764\pi\)
\(234\) 605.296 0.169100
\(235\) 2900.44 0.805122
\(236\) 1412.52 0.389607
\(237\) 1624.81 0.445328
\(238\) −2379.24 −0.647997
\(239\) −2573.18 −0.696423 −0.348212 0.937416i \(-0.613211\pi\)
−0.348212 + 0.937416i \(0.613211\pi\)
\(240\) 810.057 0.217871
\(241\) −696.127 −0.186064 −0.0930321 0.995663i \(-0.529656\pi\)
−0.0930321 + 0.995663i \(0.529656\pi\)
\(242\) −2057.40 −0.546508
\(243\) 16466.1 4.34692
\(244\) −322.443 −0.0845996
\(245\) 1321.41 0.344578
\(246\) −3447.82 −0.893598
\(247\) 317.823 0.0818729
\(248\) −1765.57 −0.452071
\(249\) −329.740 −0.0839213
\(250\) 250.000 0.0632456
\(251\) 6467.81 1.62647 0.813236 0.581934i \(-0.197704\pi\)
0.813236 + 0.581934i \(0.197704\pi\)
\(252\) −7445.18 −1.86112
\(253\) 399.894 0.0993721
\(254\) 3229.21 0.797711
\(255\) 2444.04 0.600204
\(256\) 256.000 0.0625000
\(257\) 5332.72 1.29434 0.647172 0.762344i \(-0.275952\pi\)
0.647172 + 0.762344i \(0.275952\pi\)
\(258\) −4635.96 −1.11869
\(259\) 10421.7 2.50027
\(260\) 80.1398 0.0191156
\(261\) −19204.8 −4.55460
\(262\) −3949.11 −0.931209
\(263\) −6872.85 −1.61140 −0.805699 0.592325i \(-0.798210\pi\)
−0.805699 + 0.592325i \(0.798210\pi\)
\(264\) −1408.42 −0.328342
\(265\) −1301.77 −0.301763
\(266\) −3909.24 −0.901094
\(267\) −253.523 −0.0581099
\(268\) −3280.04 −0.747614
\(269\) −1926.13 −0.436572 −0.218286 0.975885i \(-0.570047\pi\)
−0.218286 + 0.975885i \(0.570047\pi\)
\(270\) 4914.02 1.10762
\(271\) −3653.06 −0.818847 −0.409423 0.912344i \(-0.634270\pi\)
−0.409423 + 0.912344i \(0.634270\pi\)
\(272\) 772.384 0.172179
\(273\) −999.859 −0.221664
\(274\) 1507.61 0.332402
\(275\) −434.668 −0.0953144
\(276\) −931.566 −0.203165
\(277\) −1047.37 −0.227185 −0.113592 0.993527i \(-0.536236\pi\)
−0.113592 + 0.993527i \(0.536236\pi\)
\(278\) 2028.19 0.437565
\(279\) −16669.2 −3.57691
\(280\) −985.723 −0.210387
\(281\) −2758.90 −0.585701 −0.292851 0.956158i \(-0.594604\pi\)
−0.292851 + 0.956158i \(0.594604\pi\)
\(282\) 11747.6 2.48071
\(283\) 3355.58 0.704837 0.352418 0.935843i \(-0.385359\pi\)
0.352418 + 0.935843i \(0.385359\pi\)
\(284\) 2459.38 0.513864
\(285\) 4015.72 0.834634
\(286\) −139.337 −0.0288082
\(287\) 4195.50 0.862902
\(288\) 2416.96 0.494517
\(289\) −2582.62 −0.525670
\(290\) −2542.67 −0.514866
\(291\) −2529.39 −0.509537
\(292\) 2046.35 0.410114
\(293\) 419.625 0.0836681 0.0418341 0.999125i \(-0.486680\pi\)
0.0418341 + 0.999125i \(0.486680\pi\)
\(294\) 5352.08 1.06170
\(295\) 1765.65 0.348475
\(296\) −3383.23 −0.664346
\(297\) −8543.85 −1.66924
\(298\) −5543.59 −1.07762
\(299\) −92.1607 −0.0178254
\(300\) 1012.57 0.194869
\(301\) 5641.30 1.08026
\(302\) 6217.24 1.18464
\(303\) 6282.93 1.19124
\(304\) 1269.08 0.239429
\(305\) −403.054 −0.0756682
\(306\) 7292.28 1.36233
\(307\) −4133.41 −0.768425 −0.384212 0.923245i \(-0.625527\pi\)
−0.384212 + 0.923245i \(0.625527\pi\)
\(308\) 1713.85 0.317064
\(309\) 14917.6 2.74639
\(310\) −2206.96 −0.404345
\(311\) −6991.03 −1.27468 −0.637339 0.770584i \(-0.719965\pi\)
−0.637339 + 0.770584i \(0.719965\pi\)
\(312\) 324.589 0.0588982
\(313\) 9380.53 1.69399 0.846996 0.531600i \(-0.178409\pi\)
0.846996 + 0.531600i \(0.178409\pi\)
\(314\) 7425.75 1.33458
\(315\) −9306.47 −1.66464
\(316\) 641.855 0.114263
\(317\) −7995.35 −1.41660 −0.708302 0.705910i \(-0.750538\pi\)
−0.708302 + 0.705910i \(0.750538\pi\)
\(318\) −5272.54 −0.929778
\(319\) 4420.87 0.775929
\(320\) 320.000 0.0559017
\(321\) −9519.60 −1.65524
\(322\) 1133.58 0.196186
\(323\) 3828.96 0.659595
\(324\) 11745.9 2.01405
\(325\) 100.175 0.0170975
\(326\) 1831.58 0.311172
\(327\) −6442.63 −1.08954
\(328\) −1362.01 −0.229281
\(329\) −14295.1 −2.39549
\(330\) −1760.53 −0.293678
\(331\) −4798.86 −0.796886 −0.398443 0.917193i \(-0.630449\pi\)
−0.398443 + 0.917193i \(0.630449\pi\)
\(332\) −130.258 −0.0215327
\(333\) −31942.0 −5.25648
\(334\) 2864.63 0.469298
\(335\) −4100.06 −0.668687
\(336\) −3992.46 −0.648234
\(337\) 6895.51 1.11461 0.557303 0.830309i \(-0.311836\pi\)
0.557303 + 0.830309i \(0.311836\pi\)
\(338\) −4361.89 −0.701939
\(339\) 8429.16 1.35047
\(340\) 965.480 0.154002
\(341\) 3837.17 0.609368
\(342\) 11981.7 1.89443
\(343\) 1939.86 0.305372
\(344\) −1831.36 −0.287036
\(345\) −1164.46 −0.181717
\(346\) −6959.08 −1.08128
\(347\) −8744.17 −1.35277 −0.676386 0.736548i \(-0.736455\pi\)
−0.676386 + 0.736548i \(0.736455\pi\)
\(348\) −10298.6 −1.58638
\(349\) −6387.08 −0.979635 −0.489818 0.871825i \(-0.662937\pi\)
−0.489818 + 0.871825i \(0.662937\pi\)
\(350\) −1232.15 −0.188175
\(351\) 1969.04 0.299429
\(352\) −556.375 −0.0842468
\(353\) −589.384 −0.0888661 −0.0444331 0.999012i \(-0.514148\pi\)
−0.0444331 + 0.999012i \(0.514148\pi\)
\(354\) 7151.39 1.07371
\(355\) 3074.23 0.459614
\(356\) −100.150 −0.0149100
\(357\) −12045.8 −1.78580
\(358\) 7285.41 1.07555
\(359\) 7214.13 1.06058 0.530289 0.847817i \(-0.322083\pi\)
0.530289 + 0.847817i \(0.322083\pi\)
\(360\) 3021.20 0.442309
\(361\) −567.774 −0.0827780
\(362\) 4818.30 0.699570
\(363\) −10416.3 −1.50611
\(364\) −394.978 −0.0568749
\(365\) 2557.93 0.366817
\(366\) −1632.48 −0.233145
\(367\) 12356.4 1.75750 0.878748 0.477286i \(-0.158379\pi\)
0.878748 + 0.477286i \(0.158379\pi\)
\(368\) −368.000 −0.0521286
\(369\) −12859.1 −1.81413
\(370\) −4229.04 −0.594209
\(371\) 6415.92 0.897839
\(372\) −8938.81 −1.24585
\(373\) 7145.98 0.991969 0.495985 0.868331i \(-0.334807\pi\)
0.495985 + 0.868331i \(0.334807\pi\)
\(374\) −1678.65 −0.232088
\(375\) 1265.71 0.174297
\(376\) 4640.70 0.636505
\(377\) −1018.85 −0.139186
\(378\) −24219.3 −3.29552
\(379\) 2170.69 0.294197 0.147099 0.989122i \(-0.453007\pi\)
0.147099 + 0.989122i \(0.453007\pi\)
\(380\) 1586.34 0.214152
\(381\) 16349.0 2.19839
\(382\) −379.215 −0.0507914
\(383\) −7967.21 −1.06294 −0.531469 0.847078i \(-0.678360\pi\)
−0.531469 + 0.847078i \(0.678360\pi\)
\(384\) 1296.09 0.172242
\(385\) 2142.31 0.283590
\(386\) −3710.90 −0.489326
\(387\) −17290.3 −2.27111
\(388\) −999.193 −0.130738
\(389\) −568.951 −0.0741567 −0.0370783 0.999312i \(-0.511805\pi\)
−0.0370783 + 0.999312i \(0.511805\pi\)
\(390\) 405.736 0.0526801
\(391\) −1110.30 −0.143607
\(392\) 2114.25 0.272413
\(393\) −19993.8 −2.56629
\(394\) 4859.70 0.621391
\(395\) 802.319 0.102200
\(396\) −5252.88 −0.666583
\(397\) 8564.88 1.08277 0.541384 0.840775i \(-0.317900\pi\)
0.541384 + 0.840775i \(0.317900\pi\)
\(398\) 8666.98 1.09155
\(399\) −19791.9 −2.48330
\(400\) 400.000 0.0500000
\(401\) −12455.6 −1.55113 −0.775563 0.631270i \(-0.782534\pi\)
−0.775563 + 0.631270i \(0.782534\pi\)
\(402\) −16606.4 −2.06033
\(403\) −884.325 −0.109309
\(404\) 2481.97 0.305650
\(405\) 14682.4 1.80142
\(406\) 12531.9 1.53189
\(407\) 7352.91 0.895504
\(408\) 3910.47 0.474503
\(409\) 11838.9 1.43129 0.715645 0.698465i \(-0.246133\pi\)
0.715645 + 0.698465i \(0.246133\pi\)
\(410\) −1702.51 −0.205075
\(411\) 7632.82 0.916056
\(412\) 5892.96 0.704673
\(413\) −8702.22 −1.03682
\(414\) −3474.38 −0.412456
\(415\) −162.823 −0.0192594
\(416\) 128.224 0.0151122
\(417\) 10268.5 1.20587
\(418\) −2758.13 −0.322738
\(419\) −1531.77 −0.178596 −0.0892981 0.996005i \(-0.528462\pi\)
−0.0892981 + 0.996005i \(0.528462\pi\)
\(420\) −4990.58 −0.579798
\(421\) −9985.06 −1.15592 −0.577959 0.816066i \(-0.696151\pi\)
−0.577959 + 0.816066i \(0.696151\pi\)
\(422\) −1633.58 −0.188439
\(423\) 43814.0 5.03620
\(424\) −2082.83 −0.238564
\(425\) 1206.85 0.137743
\(426\) 12451.5 1.41614
\(427\) 1986.50 0.225137
\(428\) −3760.56 −0.424705
\(429\) −705.441 −0.0793917
\(430\) −2289.20 −0.256733
\(431\) −13786.7 −1.54079 −0.770396 0.637566i \(-0.779941\pi\)
−0.770396 + 0.637566i \(0.779941\pi\)
\(432\) 7862.42 0.875651
\(433\) −2621.92 −0.290996 −0.145498 0.989359i \(-0.546478\pi\)
−0.145498 + 0.989359i \(0.546478\pi\)
\(434\) 10877.3 1.20305
\(435\) −12873.2 −1.41890
\(436\) −2545.06 −0.279555
\(437\) −1824.30 −0.199698
\(438\) 10360.4 1.13022
\(439\) 12062.7 1.31143 0.655717 0.755007i \(-0.272367\pi\)
0.655717 + 0.755007i \(0.272367\pi\)
\(440\) −695.468 −0.0753526
\(441\) 19961.2 2.15541
\(442\) 386.867 0.0416321
\(443\) 3659.26 0.392453 0.196227 0.980559i \(-0.437131\pi\)
0.196227 + 0.980559i \(0.437131\pi\)
\(444\) −17128.8 −1.83085
\(445\) −125.188 −0.0133359
\(446\) −9027.60 −0.958452
\(447\) −28066.4 −2.96979
\(448\) −1577.16 −0.166325
\(449\) −10529.6 −1.10674 −0.553368 0.832937i \(-0.686658\pi\)
−0.553368 + 0.832937i \(0.686658\pi\)
\(450\) 3776.50 0.395613
\(451\) 2960.10 0.309059
\(452\) 3329.81 0.346506
\(453\) 31477.0 3.26472
\(454\) 5585.70 0.577423
\(455\) −493.723 −0.0508705
\(456\) 6425.15 0.659836
\(457\) 6443.23 0.659522 0.329761 0.944064i \(-0.393032\pi\)
0.329761 + 0.944064i \(0.393032\pi\)
\(458\) 2809.00 0.286585
\(459\) 23721.9 2.41230
\(460\) −460.000 −0.0466252
\(461\) −3263.86 −0.329747 −0.164873 0.986315i \(-0.552722\pi\)
−0.164873 + 0.986315i \(0.552722\pi\)
\(462\) 8676.97 0.873786
\(463\) 9518.12 0.955388 0.477694 0.878526i \(-0.341473\pi\)
0.477694 + 0.878526i \(0.341473\pi\)
\(464\) −4068.28 −0.407037
\(465\) −11173.5 −1.11432
\(466\) 2147.59 0.213487
\(467\) 19092.6 1.89187 0.945934 0.324360i \(-0.105149\pi\)
0.945934 + 0.324360i \(0.105149\pi\)
\(468\) 1210.59 0.119572
\(469\) 20207.6 1.98955
\(470\) 5800.87 0.569307
\(471\) 37595.5 3.67794
\(472\) 2825.04 0.275494
\(473\) 3980.17 0.386910
\(474\) 3249.62 0.314895
\(475\) 1982.93 0.191543
\(476\) −4758.48 −0.458203
\(477\) −19664.6 −1.88758
\(478\) −5146.36 −0.492446
\(479\) −6324.81 −0.603315 −0.301658 0.953416i \(-0.597540\pi\)
−0.301658 + 0.953416i \(0.597540\pi\)
\(480\) 1620.11 0.154058
\(481\) −1694.57 −0.160636
\(482\) −1392.25 −0.131567
\(483\) 5739.16 0.540664
\(484\) −4114.81 −0.386440
\(485\) −1248.99 −0.116936
\(486\) 32932.2 3.07373
\(487\) −7873.07 −0.732573 −0.366286 0.930502i \(-0.619371\pi\)
−0.366286 + 0.930502i \(0.619371\pi\)
\(488\) −644.886 −0.0598209
\(489\) 9273.04 0.857549
\(490\) 2642.82 0.243654
\(491\) −3556.82 −0.326918 −0.163459 0.986550i \(-0.552265\pi\)
−0.163459 + 0.986550i \(0.552265\pi\)
\(492\) −6895.64 −0.631869
\(493\) −12274.5 −1.12133
\(494\) 635.646 0.0578929
\(495\) −6566.10 −0.596210
\(496\) −3531.13 −0.319662
\(497\) −15151.7 −1.36750
\(498\) −659.479 −0.0593413
\(499\) −1933.37 −0.173446 −0.0867231 0.996232i \(-0.527640\pi\)
−0.0867231 + 0.996232i \(0.527640\pi\)
\(500\) 500.000 0.0447214
\(501\) 14503.2 1.29332
\(502\) 12935.6 1.15009
\(503\) 2114.36 0.187425 0.0937123 0.995599i \(-0.470127\pi\)
0.0937123 + 0.995599i \(0.470127\pi\)
\(504\) −14890.4 −1.31601
\(505\) 3102.46 0.273382
\(506\) 799.789 0.0702667
\(507\) −22083.6 −1.93445
\(508\) 6458.42 0.564067
\(509\) −316.452 −0.0275570 −0.0137785 0.999905i \(-0.504386\pi\)
−0.0137785 + 0.999905i \(0.504386\pi\)
\(510\) 4888.09 0.424408
\(511\) −12607.1 −1.09140
\(512\) 512.000 0.0441942
\(513\) 38976.6 3.35450
\(514\) 10665.4 0.915239
\(515\) 7366.20 0.630279
\(516\) −9271.92 −0.791034
\(517\) −10085.8 −0.857976
\(518\) 20843.3 1.76796
\(519\) −35232.8 −2.97987
\(520\) 160.280 0.0135168
\(521\) −309.041 −0.0259872 −0.0129936 0.999916i \(-0.504136\pi\)
−0.0129936 + 0.999916i \(0.504136\pi\)
\(522\) −38409.7 −3.22059
\(523\) −5892.46 −0.492656 −0.246328 0.969186i \(-0.579224\pi\)
−0.246328 + 0.969186i \(0.579224\pi\)
\(524\) −7898.22 −0.658464
\(525\) −6238.22 −0.518587
\(526\) −13745.7 −1.13943
\(527\) −10653.9 −0.880626
\(528\) −2816.84 −0.232173
\(529\) 529.000 0.0434783
\(530\) −2603.54 −0.213378
\(531\) 26672.0 2.17978
\(532\) −7818.49 −0.637170
\(533\) −682.193 −0.0554391
\(534\) −507.046 −0.0410899
\(535\) −4700.71 −0.379868
\(536\) −6560.09 −0.528643
\(537\) 36885.0 2.96407
\(538\) −3852.25 −0.308703
\(539\) −4594.99 −0.367199
\(540\) 9828.03 0.783206
\(541\) 1560.55 0.124017 0.0620085 0.998076i \(-0.480249\pi\)
0.0620085 + 0.998076i \(0.480249\pi\)
\(542\) −7306.12 −0.579012
\(543\) 24394.4 1.92792
\(544\) 1544.77 0.121749
\(545\) −3181.32 −0.250042
\(546\) −1999.72 −0.156740
\(547\) 17756.3 1.38795 0.693973 0.720001i \(-0.255859\pi\)
0.693973 + 0.720001i \(0.255859\pi\)
\(548\) 3015.22 0.235044
\(549\) −6088.54 −0.473319
\(550\) −869.335 −0.0673974
\(551\) −20167.8 −1.55930
\(552\) −1863.13 −0.143660
\(553\) −3954.32 −0.304078
\(554\) −2094.73 −0.160644
\(555\) −21411.0 −1.63756
\(556\) 4056.39 0.309405
\(557\) 1212.77 0.0922559 0.0461280 0.998936i \(-0.485312\pi\)
0.0461280 + 0.998936i \(0.485312\pi\)
\(558\) −33338.3 −2.52926
\(559\) −917.280 −0.0694040
\(560\) −1971.45 −0.148766
\(561\) −8498.78 −0.639605
\(562\) −5517.80 −0.414153
\(563\) 12558.2 0.940078 0.470039 0.882646i \(-0.344240\pi\)
0.470039 + 0.882646i \(0.344240\pi\)
\(564\) 23495.2 1.75412
\(565\) 4162.26 0.309925
\(566\) 6711.17 0.498395
\(567\) −72363.9 −5.35978
\(568\) 4918.76 0.363357
\(569\) 9776.72 0.720319 0.360159 0.932891i \(-0.382722\pi\)
0.360159 + 0.932891i \(0.382722\pi\)
\(570\) 8031.44 0.590175
\(571\) −18733.9 −1.37301 −0.686505 0.727125i \(-0.740856\pi\)
−0.686505 + 0.727125i \(0.740856\pi\)
\(572\) −278.673 −0.0203705
\(573\) −1919.91 −0.139975
\(574\) 8391.01 0.610164
\(575\) −575.000 −0.0417029
\(576\) 4833.92 0.349676
\(577\) 5113.58 0.368944 0.184472 0.982838i \(-0.440942\pi\)
0.184472 + 0.982838i \(0.440942\pi\)
\(578\) −5165.24 −0.371705
\(579\) −18787.8 −1.34852
\(580\) −5085.35 −0.364065
\(581\) 802.492 0.0573029
\(582\) −5058.77 −0.360297
\(583\) 4526.70 0.321572
\(584\) 4092.69 0.289995
\(585\) 1513.24 0.106948
\(586\) 839.250 0.0591623
\(587\) −5379.95 −0.378287 −0.189143 0.981949i \(-0.560571\pi\)
−0.189143 + 0.981949i \(0.560571\pi\)
\(588\) 10704.2 0.750735
\(589\) −17505.0 −1.22458
\(590\) 3531.30 0.246409
\(591\) 24603.9 1.71247
\(592\) −6766.46 −0.469763
\(593\) −15060.3 −1.04292 −0.521461 0.853275i \(-0.674613\pi\)
−0.521461 + 0.853275i \(0.674613\pi\)
\(594\) −17087.7 −1.18033
\(595\) −5948.10 −0.409829
\(596\) −11087.2 −0.761995
\(597\) 43879.7 3.00817
\(598\) −184.321 −0.0126045
\(599\) −3772.04 −0.257298 −0.128649 0.991690i \(-0.541064\pi\)
−0.128649 + 0.991690i \(0.541064\pi\)
\(600\) 2025.14 0.137794
\(601\) −14663.9 −0.995261 −0.497631 0.867389i \(-0.665796\pi\)
−0.497631 + 0.867389i \(0.665796\pi\)
\(602\) 11282.6 0.763861
\(603\) −61935.5 −4.18277
\(604\) 12434.5 0.837668
\(605\) −5143.51 −0.345642
\(606\) 12565.9 0.842332
\(607\) −24514.5 −1.63923 −0.819614 0.572915i \(-0.805812\pi\)
−0.819614 + 0.572915i \(0.805812\pi\)
\(608\) 2538.15 0.169302
\(609\) 63447.1 4.22168
\(610\) −806.108 −0.0535055
\(611\) 2324.40 0.153904
\(612\) 14584.6 0.963310
\(613\) 14451.2 0.952167 0.476084 0.879400i \(-0.342056\pi\)
0.476084 + 0.879400i \(0.342056\pi\)
\(614\) −8266.83 −0.543358
\(615\) −8619.55 −0.565161
\(616\) 3427.70 0.224198
\(617\) 3292.19 0.214811 0.107406 0.994215i \(-0.465746\pi\)
0.107406 + 0.994215i \(0.465746\pi\)
\(618\) 29835.2 1.94199
\(619\) −12595.5 −0.817858 −0.408929 0.912566i \(-0.634098\pi\)
−0.408929 + 0.912566i \(0.634098\pi\)
\(620\) −4413.92 −0.285915
\(621\) −11302.2 −0.730343
\(622\) −13982.1 −0.901333
\(623\) 617.002 0.0396785
\(624\) 649.178 0.0416473
\(625\) 625.000 0.0400000
\(626\) 18761.1 1.19783
\(627\) −13964.0 −0.889425
\(628\) 14851.5 0.943693
\(629\) −20415.3 −1.29413
\(630\) −18612.9 −1.17707
\(631\) 19889.3 1.25480 0.627401 0.778697i \(-0.284119\pi\)
0.627401 + 0.778697i \(0.284119\pi\)
\(632\) 1283.71 0.0807963
\(633\) −8270.56 −0.519313
\(634\) −15990.7 −1.00169
\(635\) 8073.02 0.504517
\(636\) −10545.1 −0.657452
\(637\) 1058.97 0.0658682
\(638\) 8841.75 0.548665
\(639\) 46439.3 2.87498
\(640\) 640.000 0.0395285
\(641\) −19276.0 −1.18776 −0.593880 0.804553i \(-0.702405\pi\)
−0.593880 + 0.804553i \(0.702405\pi\)
\(642\) −19039.2 −1.17043
\(643\) −10219.2 −0.626758 −0.313379 0.949628i \(-0.601461\pi\)
−0.313379 + 0.949628i \(0.601461\pi\)
\(644\) 2267.16 0.138725
\(645\) −11589.9 −0.707522
\(646\) 7657.93 0.466404
\(647\) 20818.4 1.26500 0.632500 0.774560i \(-0.282029\pi\)
0.632500 + 0.774560i \(0.282029\pi\)
\(648\) 23491.8 1.42415
\(649\) −6139.77 −0.371352
\(650\) 200.349 0.0120898
\(651\) 55070.0 3.31546
\(652\) 3663.17 0.220032
\(653\) −15135.3 −0.907031 −0.453516 0.891248i \(-0.649830\pi\)
−0.453516 + 0.891248i \(0.649830\pi\)
\(654\) −12885.3 −0.770418
\(655\) −9872.78 −0.588949
\(656\) −2724.01 −0.162126
\(657\) 38640.2 2.29451
\(658\) −28590.3 −1.69387
\(659\) −13207.9 −0.780737 −0.390369 0.920659i \(-0.627652\pi\)
−0.390369 + 0.920659i \(0.627652\pi\)
\(660\) −3521.06 −0.207662
\(661\) 6671.34 0.392564 0.196282 0.980547i \(-0.437113\pi\)
0.196282 + 0.980547i \(0.437113\pi\)
\(662\) −9597.72 −0.563484
\(663\) 1958.65 0.114733
\(664\) −260.517 −0.0152259
\(665\) −9773.11 −0.569902
\(666\) −63883.9 −3.71689
\(667\) 5848.15 0.339492
\(668\) 5729.26 0.331844
\(669\) −45705.5 −2.64137
\(670\) −8200.11 −0.472833
\(671\) 1401.56 0.0806355
\(672\) −7984.92 −0.458371
\(673\) −9534.41 −0.546099 −0.273049 0.962000i \(-0.588032\pi\)
−0.273049 + 0.962000i \(0.588032\pi\)
\(674\) 13791.0 0.788146
\(675\) 12285.0 0.700520
\(676\) −8723.78 −0.496346
\(677\) 17748.4 1.00757 0.503787 0.863828i \(-0.331940\pi\)
0.503787 + 0.863828i \(0.331940\pi\)
\(678\) 16858.3 0.954927
\(679\) 6155.80 0.347920
\(680\) 1930.96 0.108896
\(681\) 28279.6 1.59130
\(682\) 7674.35 0.430888
\(683\) 9583.57 0.536904 0.268452 0.963293i \(-0.413488\pi\)
0.268452 + 0.963293i \(0.413488\pi\)
\(684\) 23963.3 1.33956
\(685\) 3769.03 0.210229
\(686\) 3879.73 0.215931
\(687\) 14221.5 0.789790
\(688\) −3662.72 −0.202965
\(689\) −1043.24 −0.0576837
\(690\) −2328.91 −0.128493
\(691\) 9410.74 0.518092 0.259046 0.965865i \(-0.416592\pi\)
0.259046 + 0.965865i \(0.416592\pi\)
\(692\) −13918.2 −0.764580
\(693\) 32361.8 1.77391
\(694\) −17488.3 −0.956554
\(695\) 5070.48 0.276740
\(696\) −20597.1 −1.12174
\(697\) −8218.69 −0.446636
\(698\) −12774.2 −0.692707
\(699\) 10872.9 0.588343
\(700\) −2464.31 −0.133060
\(701\) −19517.9 −1.05161 −0.525806 0.850605i \(-0.676236\pi\)
−0.525806 + 0.850605i \(0.676236\pi\)
\(702\) 3938.08 0.211728
\(703\) −33543.6 −1.79960
\(704\) −1112.75 −0.0595715
\(705\) 29369.0 1.56894
\(706\) −1178.77 −0.0628378
\(707\) −15290.9 −0.813397
\(708\) 14302.8 0.759225
\(709\) −28430.7 −1.50598 −0.752990 0.658033i \(-0.771389\pi\)
−0.752990 + 0.658033i \(0.771389\pi\)
\(710\) 6148.45 0.324996
\(711\) 12119.8 0.639282
\(712\) −200.300 −0.0105429
\(713\) 5076.00 0.266617
\(714\) −24091.5 −1.26275
\(715\) −348.342 −0.0182199
\(716\) 14570.8 0.760527
\(717\) −26055.3 −1.35712
\(718\) 14428.3 0.749942
\(719\) 18716.0 0.970779 0.485390 0.874298i \(-0.338678\pi\)
0.485390 + 0.874298i \(0.338678\pi\)
\(720\) 6042.41 0.312760
\(721\) −36305.2 −1.87528
\(722\) −1135.55 −0.0585329
\(723\) −7048.78 −0.362582
\(724\) 9636.61 0.494671
\(725\) −6356.69 −0.325630
\(726\) −20832.7 −1.06498
\(727\) 18419.5 0.939670 0.469835 0.882754i \(-0.344313\pi\)
0.469835 + 0.882754i \(0.344313\pi\)
\(728\) −789.956 −0.0402167
\(729\) 87446.1 4.44272
\(730\) 5115.86 0.259379
\(731\) −11050.9 −0.559141
\(732\) −3264.97 −0.164859
\(733\) −21548.4 −1.08582 −0.542912 0.839790i \(-0.682678\pi\)
−0.542912 + 0.839790i \(0.682678\pi\)
\(734\) 24712.9 1.24274
\(735\) 13380.2 0.671478
\(736\) −736.000 −0.0368605
\(737\) 14257.3 0.712584
\(738\) −25718.1 −1.28279
\(739\) 12066.4 0.600636 0.300318 0.953839i \(-0.402907\pi\)
0.300318 + 0.953839i \(0.402907\pi\)
\(740\) −8458.08 −0.420169
\(741\) 3218.19 0.159545
\(742\) 12831.8 0.634868
\(743\) −21951.0 −1.08385 −0.541926 0.840426i \(-0.682305\pi\)
−0.541926 + 0.840426i \(0.682305\pi\)
\(744\) −17877.6 −0.880948
\(745\) −13859.0 −0.681549
\(746\) 14292.0 0.701428
\(747\) −2459.61 −0.120472
\(748\) −3357.31 −0.164111
\(749\) 23168.0 1.13023
\(750\) 2531.43 0.123246
\(751\) −3112.43 −0.151230 −0.0756152 0.997137i \(-0.524092\pi\)
−0.0756152 + 0.997137i \(0.524092\pi\)
\(752\) 9281.40 0.450077
\(753\) 65491.2 3.16950
\(754\) −2037.69 −0.0984197
\(755\) 15543.1 0.749233
\(756\) −48438.6 −2.33028
\(757\) −7684.64 −0.368960 −0.184480 0.982836i \(-0.559060\pi\)
−0.184480 + 0.982836i \(0.559060\pi\)
\(758\) 4341.38 0.208029
\(759\) 4049.21 0.193646
\(760\) 3172.69 0.151428
\(761\) −36484.6 −1.73793 −0.868965 0.494874i \(-0.835214\pi\)
−0.868965 + 0.494874i \(0.835214\pi\)
\(762\) 32698.0 1.55450
\(763\) 15679.5 0.743954
\(764\) −758.430 −0.0359150
\(765\) 18230.7 0.861611
\(766\) −15934.4 −0.751611
\(767\) 1414.99 0.0666132
\(768\) 2592.18 0.121793
\(769\) 2004.39 0.0939925 0.0469962 0.998895i \(-0.485035\pi\)
0.0469962 + 0.998895i \(0.485035\pi\)
\(770\) 4284.62 0.200529
\(771\) 53997.6 2.52228
\(772\) −7421.81 −0.346006
\(773\) 7716.17 0.359031 0.179516 0.983755i \(-0.442547\pi\)
0.179516 + 0.983755i \(0.442547\pi\)
\(774\) −34580.7 −1.60591
\(775\) −5517.40 −0.255730
\(776\) −1998.39 −0.0924457
\(777\) 105527. 4.87226
\(778\) −1137.90 −0.0524367
\(779\) −13503.8 −0.621084
\(780\) 811.472 0.0372505
\(781\) −10690.1 −0.489786
\(782\) −2220.61 −0.101546
\(783\) −124947. −5.70275
\(784\) 4228.51 0.192625
\(785\) 18564.4 0.844065
\(786\) −39987.6 −1.81464
\(787\) −57.0149 −0.00258241 −0.00129121 0.999999i \(-0.500411\pi\)
−0.00129121 + 0.999999i \(0.500411\pi\)
\(788\) 9719.39 0.439390
\(789\) −69592.5 −3.14012
\(790\) 1604.64 0.0722664
\(791\) −20514.2 −0.922124
\(792\) −10505.8 −0.471346
\(793\) −323.006 −0.0144644
\(794\) 17129.8 0.765633
\(795\) −13181.3 −0.588043
\(796\) 17334.0 0.771842
\(797\) −15184.7 −0.674870 −0.337435 0.941349i \(-0.609559\pi\)
−0.337435 + 0.941349i \(0.609559\pi\)
\(798\) −39583.9 −1.75596
\(799\) 28003.2 1.23990
\(800\) 800.000 0.0353553
\(801\) −1891.09 −0.0834186
\(802\) −24911.1 −1.09681
\(803\) −8894.80 −0.390898
\(804\) −33212.8 −1.45687
\(805\) 2833.95 0.124079
\(806\) −1768.65 −0.0772929
\(807\) −19503.4 −0.850746
\(808\) 4963.94 0.216127
\(809\) −30286.4 −1.31621 −0.658105 0.752926i \(-0.728642\pi\)
−0.658105 + 0.752926i \(0.728642\pi\)
\(810\) 29364.8 1.27379
\(811\) −43936.2 −1.90235 −0.951176 0.308650i \(-0.900123\pi\)
−0.951176 + 0.308650i \(0.900123\pi\)
\(812\) 25063.7 1.08321
\(813\) −36989.8 −1.59568
\(814\) 14705.8 0.633217
\(815\) 4578.96 0.196802
\(816\) 7820.94 0.335524
\(817\) −18157.3 −0.777532
\(818\) 23677.9 1.01207
\(819\) −7458.18 −0.318205
\(820\) −3405.02 −0.145010
\(821\) −5245.69 −0.222991 −0.111496 0.993765i \(-0.535564\pi\)
−0.111496 + 0.993765i \(0.535564\pi\)
\(822\) 15265.6 0.647750
\(823\) 10678.0 0.452260 0.226130 0.974097i \(-0.427393\pi\)
0.226130 + 0.974097i \(0.427393\pi\)
\(824\) 11785.9 0.498279
\(825\) −4401.32 −0.185739
\(826\) −17404.4 −0.733145
\(827\) 3393.69 0.142697 0.0713484 0.997451i \(-0.477270\pi\)
0.0713484 + 0.997451i \(0.477270\pi\)
\(828\) −6948.77 −0.291650
\(829\) 9601.74 0.402270 0.201135 0.979564i \(-0.435537\pi\)
0.201135 + 0.979564i \(0.435537\pi\)
\(830\) −325.646 −0.0136185
\(831\) −10605.3 −0.442713
\(832\) 256.447 0.0106859
\(833\) 12757.9 0.530656
\(834\) 20536.9 0.852680
\(835\) 7161.58 0.296810
\(836\) −5516.26 −0.228210
\(837\) −108450. −4.47860
\(838\) −3063.54 −0.126287
\(839\) 11992.8 0.493489 0.246744 0.969081i \(-0.420639\pi\)
0.246744 + 0.969081i \(0.420639\pi\)
\(840\) −9981.15 −0.409979
\(841\) 40263.0 1.65087
\(842\) −19970.1 −0.817358
\(843\) −27935.8 −1.14135
\(844\) −3267.15 −0.133247
\(845\) −10904.7 −0.443945
\(846\) 87628.1 3.56113
\(847\) 25350.4 1.02839
\(848\) −4165.66 −0.168690
\(849\) 33977.7 1.37351
\(850\) 2413.70 0.0973991
\(851\) 9726.79 0.391810
\(852\) 24903.0 1.00136
\(853\) −15441.5 −0.619821 −0.309911 0.950766i \(-0.600299\pi\)
−0.309911 + 0.950766i \(0.600299\pi\)
\(854\) 3973.00 0.159196
\(855\) 29954.2 1.19814
\(856\) −7521.13 −0.300312
\(857\) −44572.4 −1.77662 −0.888310 0.459244i \(-0.848120\pi\)
−0.888310 + 0.459244i \(0.848120\pi\)
\(858\) −1410.88 −0.0561384
\(859\) 2519.56 0.100077 0.0500386 0.998747i \(-0.484066\pi\)
0.0500386 + 0.998747i \(0.484066\pi\)
\(860\) −4578.40 −0.181537
\(861\) 42482.5 1.68153
\(862\) −27573.4 −1.08950
\(863\) 28980.1 1.14310 0.571548 0.820568i \(-0.306343\pi\)
0.571548 + 0.820568i \(0.306343\pi\)
\(864\) 15724.8 0.619178
\(865\) −17397.7 −0.683861
\(866\) −5243.83 −0.205765
\(867\) −26150.9 −1.02437
\(868\) 21754.5 0.850687
\(869\) −2789.94 −0.108909
\(870\) −25746.4 −1.00332
\(871\) −3285.77 −0.127823
\(872\) −5090.11 −0.197675
\(873\) −18867.3 −0.731455
\(874\) −3648.59 −0.141208
\(875\) −3080.39 −0.119013
\(876\) 20720.7 0.799187
\(877\) −7955.28 −0.306307 −0.153153 0.988202i \(-0.548943\pi\)
−0.153153 + 0.988202i \(0.548943\pi\)
\(878\) 24125.3 0.927323
\(879\) 4249.00 0.163044
\(880\) −1390.94 −0.0532823
\(881\) 29722.0 1.13662 0.568309 0.822815i \(-0.307598\pi\)
0.568309 + 0.822815i \(0.307598\pi\)
\(882\) 39922.4 1.52410
\(883\) −19379.7 −0.738596 −0.369298 0.929311i \(-0.620402\pi\)
−0.369298 + 0.929311i \(0.620402\pi\)
\(884\) 773.734 0.0294383
\(885\) 17878.5 0.679072
\(886\) 7318.53 0.277507
\(887\) 22901.7 0.866925 0.433463 0.901172i \(-0.357292\pi\)
0.433463 + 0.901172i \(0.357292\pi\)
\(888\) −34257.6 −1.29461
\(889\) −39788.8 −1.50110
\(890\) −250.375 −0.00942989
\(891\) −51055.7 −1.91967
\(892\) −18055.2 −0.677728
\(893\) 46010.9 1.72419
\(894\) −56132.9 −2.09996
\(895\) 18213.5 0.680236
\(896\) −3154.31 −0.117610
\(897\) −933.193 −0.0347362
\(898\) −21059.3 −0.782581
\(899\) 56115.8 2.08183
\(900\) 7553.01 0.279741
\(901\) −12568.3 −0.464719
\(902\) 5920.20 0.218538
\(903\) 57122.2 2.10510
\(904\) 6659.61 0.245017
\(905\) 12045.8 0.442447
\(906\) 62953.9 2.30850
\(907\) 42542.2 1.55743 0.778716 0.627376i \(-0.215871\pi\)
0.778716 + 0.627376i \(0.215871\pi\)
\(908\) 11171.4 0.408300
\(909\) 46865.9 1.71006
\(910\) −987.445 −0.0359709
\(911\) 220.864 0.00803243 0.00401622 0.999992i \(-0.498722\pi\)
0.00401622 + 0.999992i \(0.498722\pi\)
\(912\) 12850.3 0.466574
\(913\) 566.191 0.0205237
\(914\) 12886.5 0.466352
\(915\) −4081.21 −0.147454
\(916\) 5617.99 0.202646
\(917\) 48659.1 1.75231
\(918\) 47443.9 1.70575
\(919\) 27835.4 0.999135 0.499567 0.866275i \(-0.333492\pi\)
0.499567 + 0.866275i \(0.333492\pi\)
\(920\) −920.000 −0.0329690
\(921\) −41853.8 −1.49743
\(922\) −6527.72 −0.233166
\(923\) 2463.68 0.0878580
\(924\) 17353.9 0.617860
\(925\) −10572.6 −0.375811
\(926\) 19036.2 0.675562
\(927\) 111274. 3.94252
\(928\) −8136.56 −0.287819
\(929\) −2172.71 −0.0767323 −0.0383661 0.999264i \(-0.512215\pi\)
−0.0383661 + 0.999264i \(0.512215\pi\)
\(930\) −22347.0 −0.787944
\(931\) 20962.1 0.737921
\(932\) 4295.17 0.150958
\(933\) −70789.1 −2.48396
\(934\) 38185.3 1.33775
\(935\) −4196.63 −0.146786
\(936\) 2421.18 0.0845501
\(937\) 54906.5 1.91432 0.957160 0.289560i \(-0.0935090\pi\)
0.957160 + 0.289560i \(0.0935090\pi\)
\(938\) 40415.2 1.40683
\(939\) 94984.6 3.30107
\(940\) 11601.7 0.402561
\(941\) 5980.06 0.207167 0.103584 0.994621i \(-0.466969\pi\)
0.103584 + 0.994621i \(0.466969\pi\)
\(942\) 75191.0 2.60070
\(943\) 3915.77 0.135223
\(944\) 5650.09 0.194804
\(945\) −60548.2 −2.08427
\(946\) 7960.33 0.273586
\(947\) −20268.6 −0.695504 −0.347752 0.937587i \(-0.613055\pi\)
−0.347752 + 0.937587i \(0.613055\pi\)
\(948\) 6499.24 0.222664
\(949\) 2049.92 0.0701193
\(950\) 3965.86 0.135442
\(951\) −80958.6 −2.76053
\(952\) −9516.97 −0.323999
\(953\) −21797.9 −0.740925 −0.370463 0.928847i \(-0.620801\pi\)
−0.370463 + 0.928847i \(0.620801\pi\)
\(954\) −39329.1 −1.33472
\(955\) −948.038 −0.0321233
\(956\) −10292.7 −0.348212
\(957\) 44764.5 1.51205
\(958\) −12649.6 −0.426608
\(959\) −18576.1 −0.625499
\(960\) 3240.23 0.108935
\(961\) 18915.6 0.634945
\(962\) −3389.14 −0.113587
\(963\) −71008.9 −2.37615
\(964\) −2784.51 −0.0930321
\(965\) −9277.26 −0.309477
\(966\) 11478.3 0.382308
\(967\) 48950.6 1.62786 0.813932 0.580960i \(-0.197323\pi\)
0.813932 + 0.580960i \(0.197323\pi\)
\(968\) −8229.62 −0.273254
\(969\) 38771.0 1.28535
\(970\) −2497.98 −0.0826860
\(971\) −26426.2 −0.873386 −0.436693 0.899611i \(-0.643850\pi\)
−0.436693 + 0.899611i \(0.643850\pi\)
\(972\) 65864.4 2.17346
\(973\) −24990.5 −0.823389
\(974\) −15746.1 −0.518007
\(975\) 1014.34 0.0333178
\(976\) −1289.77 −0.0422998
\(977\) 5770.09 0.188947 0.0944736 0.995527i \(-0.469883\pi\)
0.0944736 + 0.995527i \(0.469883\pi\)
\(978\) 18546.1 0.606379
\(979\) 435.320 0.0142113
\(980\) 5285.63 0.172289
\(981\) −48057.1 −1.56406
\(982\) −7113.64 −0.231166
\(983\) −484.532 −0.0157214 −0.00786071 0.999969i \(-0.502502\pi\)
−0.00786071 + 0.999969i \(0.502502\pi\)
\(984\) −13791.3 −0.446799
\(985\) 12149.2 0.393002
\(986\) −24549.0 −0.792901
\(987\) −144749. −4.66808
\(988\) 1271.29 0.0409365
\(989\) 5265.16 0.169285
\(990\) −13132.2 −0.421584
\(991\) −26511.5 −0.849813 −0.424907 0.905237i \(-0.639693\pi\)
−0.424907 + 0.905237i \(0.639693\pi\)
\(992\) −7062.27 −0.226035
\(993\) −48591.9 −1.55289
\(994\) −30303.4 −0.966966
\(995\) 21667.4 0.690356
\(996\) −1318.96 −0.0419606
\(997\) −4628.20 −0.147018 −0.0735088 0.997295i \(-0.523420\pi\)
−0.0735088 + 0.997295i \(0.523420\pi\)
\(998\) −3866.74 −0.122645
\(999\) −207816. −6.58158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 230.4.a.j.1.4 4
3.2 odd 2 2070.4.a.bg.1.1 4
4.3 odd 2 1840.4.a.k.1.1 4
5.2 odd 4 1150.4.b.o.599.5 8
5.3 odd 4 1150.4.b.o.599.4 8
5.4 even 2 1150.4.a.n.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.j.1.4 4 1.1 even 1 trivial
1150.4.a.n.1.1 4 5.4 even 2
1150.4.b.o.599.4 8 5.3 odd 4
1150.4.b.o.599.5 8 5.2 odd 4
1840.4.a.k.1.1 4 4.3 odd 2
2070.4.a.bg.1.1 4 3.2 odd 2