Properties

Label 230.4.a.i.1.2
Level $230$
Weight $4$
Character 230.1
Self dual yes
Analytic conductor $13.570$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [230,4,Mod(1,230)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("230.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(230, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.5704393013\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.26018\) of defining polynomial
Character \(\chi\) \(=\) 230.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.26018 q^{3} +4.00000 q^{4} -5.00000 q^{5} -6.52037 q^{6} +27.7921 q^{7} +8.00000 q^{8} -16.3712 q^{9} -10.0000 q^{10} -10.8182 q^{11} -13.0407 q^{12} +36.9683 q^{13} +55.5842 q^{14} +16.3009 q^{15} +16.0000 q^{16} +118.996 q^{17} -32.7424 q^{18} -19.3321 q^{19} -20.0000 q^{20} -90.6073 q^{21} -21.6365 q^{22} +23.0000 q^{23} -26.0815 q^{24} +25.0000 q^{25} +73.9366 q^{26} +141.398 q^{27} +111.168 q^{28} +234.499 q^{29} +32.6018 q^{30} +165.319 q^{31} +32.0000 q^{32} +35.2694 q^{33} +237.992 q^{34} -138.960 q^{35} -65.4848 q^{36} +202.301 q^{37} -38.6643 q^{38} -120.523 q^{39} -40.0000 q^{40} -295.846 q^{41} -181.215 q^{42} -65.9221 q^{43} -43.2729 q^{44} +81.8560 q^{45} +46.0000 q^{46} -110.279 q^{47} -52.1630 q^{48} +429.400 q^{49} +50.0000 q^{50} -387.949 q^{51} +147.873 q^{52} -688.135 q^{53} +282.796 q^{54} +54.0911 q^{55} +222.337 q^{56} +63.0263 q^{57} +468.998 q^{58} +10.5847 q^{59} +65.2037 q^{60} +110.579 q^{61} +330.639 q^{62} -454.990 q^{63} +64.0000 q^{64} -184.842 q^{65} +70.5388 q^{66} -643.290 q^{67} +475.984 q^{68} -74.9842 q^{69} -277.921 q^{70} +143.216 q^{71} -130.970 q^{72} -158.213 q^{73} +404.601 q^{74} -81.5046 q^{75} -77.3285 q^{76} -300.661 q^{77} -241.047 q^{78} +1123.34 q^{79} -80.0000 q^{80} -18.9616 q^{81} -591.692 q^{82} -824.600 q^{83} -362.429 q^{84} -594.981 q^{85} -131.844 q^{86} -764.510 q^{87} -86.5458 q^{88} -879.672 q^{89} +163.712 q^{90} +1027.43 q^{91} +92.0000 q^{92} -538.971 q^{93} -220.557 q^{94} +96.6607 q^{95} -104.326 q^{96} -938.437 q^{97} +858.801 q^{98} +177.107 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 4 q^{3} + 16 q^{4} - 20 q^{5} + 8 q^{6} + 26 q^{7} + 32 q^{8} + 64 q^{9} - 40 q^{10} + 93 q^{11} + 16 q^{12} + 32 q^{13} + 52 q^{14} - 20 q^{15} + 64 q^{16} + 108 q^{17} + 128 q^{18} + 185 q^{19}+ \cdots + 2013 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.26018 −0.627423 −0.313711 0.949518i \(-0.601572\pi\)
−0.313711 + 0.949518i \(0.601572\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) −6.52037 −0.443655
\(7\) 27.7921 1.50063 0.750316 0.661079i \(-0.229901\pi\)
0.750316 + 0.661079i \(0.229901\pi\)
\(8\) 8.00000 0.353553
\(9\) −16.3712 −0.606341
\(10\) −10.0000 −0.316228
\(11\) −10.8182 −0.296529 −0.148264 0.988948i \(-0.547369\pi\)
−0.148264 + 0.988948i \(0.547369\pi\)
\(12\) −13.0407 −0.313711
\(13\) 36.9683 0.788705 0.394352 0.918959i \(-0.370969\pi\)
0.394352 + 0.918959i \(0.370969\pi\)
\(14\) 55.5842 1.06111
\(15\) 16.3009 0.280592
\(16\) 16.0000 0.250000
\(17\) 118.996 1.69769 0.848847 0.528639i \(-0.177297\pi\)
0.848847 + 0.528639i \(0.177297\pi\)
\(18\) −32.7424 −0.428748
\(19\) −19.3321 −0.233426 −0.116713 0.993166i \(-0.537236\pi\)
−0.116713 + 0.993166i \(0.537236\pi\)
\(20\) −20.0000 −0.223607
\(21\) −90.6073 −0.941531
\(22\) −21.6365 −0.209678
\(23\) 23.0000 0.208514
\(24\) −26.0815 −0.221827
\(25\) 25.0000 0.200000
\(26\) 73.9366 0.557699
\(27\) 141.398 1.00785
\(28\) 111.168 0.750316
\(29\) 234.499 1.50156 0.750782 0.660550i \(-0.229677\pi\)
0.750782 + 0.660550i \(0.229677\pi\)
\(30\) 32.6018 0.198409
\(31\) 165.319 0.957814 0.478907 0.877866i \(-0.341033\pi\)
0.478907 + 0.877866i \(0.341033\pi\)
\(32\) 32.0000 0.176777
\(33\) 35.2694 0.186049
\(34\) 237.992 1.20045
\(35\) −138.960 −0.671103
\(36\) −65.4848 −0.303170
\(37\) 202.301 0.898865 0.449432 0.893314i \(-0.351626\pi\)
0.449432 + 0.893314i \(0.351626\pi\)
\(38\) −38.6643 −0.165057
\(39\) −120.523 −0.494851
\(40\) −40.0000 −0.158114
\(41\) −295.846 −1.12691 −0.563456 0.826146i \(-0.690529\pi\)
−0.563456 + 0.826146i \(0.690529\pi\)
\(42\) −181.215 −0.665763
\(43\) −65.9221 −0.233791 −0.116896 0.993144i \(-0.537294\pi\)
−0.116896 + 0.993144i \(0.537294\pi\)
\(44\) −43.2729 −0.148264
\(45\) 81.8560 0.271164
\(46\) 46.0000 0.147442
\(47\) −110.279 −0.342251 −0.171126 0.985249i \(-0.554740\pi\)
−0.171126 + 0.985249i \(0.554740\pi\)
\(48\) −52.1630 −0.156856
\(49\) 429.400 1.25190
\(50\) 50.0000 0.141421
\(51\) −387.949 −1.06517
\(52\) 147.873 0.394352
\(53\) −688.135 −1.78345 −0.891723 0.452582i \(-0.850503\pi\)
−0.891723 + 0.452582i \(0.850503\pi\)
\(54\) 282.796 0.712661
\(55\) 54.0911 0.132612
\(56\) 222.337 0.530553
\(57\) 63.0263 0.146457
\(58\) 468.998 1.06177
\(59\) 10.5847 0.0233561 0.0116781 0.999932i \(-0.496283\pi\)
0.0116781 + 0.999932i \(0.496283\pi\)
\(60\) 65.2037 0.140296
\(61\) 110.579 0.232101 0.116050 0.993243i \(-0.462977\pi\)
0.116050 + 0.993243i \(0.462977\pi\)
\(62\) 330.639 0.677276
\(63\) −454.990 −0.909894
\(64\) 64.0000 0.125000
\(65\) −184.842 −0.352720
\(66\) 70.5388 0.131557
\(67\) −643.290 −1.17299 −0.586496 0.809952i \(-0.699493\pi\)
−0.586496 + 0.809952i \(0.699493\pi\)
\(68\) 475.984 0.848847
\(69\) −74.9842 −0.130827
\(70\) −277.921 −0.474541
\(71\) 143.216 0.239389 0.119695 0.992811i \(-0.461808\pi\)
0.119695 + 0.992811i \(0.461808\pi\)
\(72\) −130.970 −0.214374
\(73\) −158.213 −0.253664 −0.126832 0.991924i \(-0.540481\pi\)
−0.126832 + 0.991924i \(0.540481\pi\)
\(74\) 404.601 0.635593
\(75\) −81.5046 −0.125485
\(76\) −77.3285 −0.116713
\(77\) −300.661 −0.444981
\(78\) −241.047 −0.349913
\(79\) 1123.34 1.59982 0.799912 0.600118i \(-0.204880\pi\)
0.799912 + 0.600118i \(0.204880\pi\)
\(80\) −80.0000 −0.111803
\(81\) −18.9616 −0.0260104
\(82\) −591.692 −0.796847
\(83\) −824.600 −1.09050 −0.545251 0.838273i \(-0.683566\pi\)
−0.545251 + 0.838273i \(0.683566\pi\)
\(84\) −362.429 −0.470765
\(85\) −594.981 −0.759232
\(86\) −131.844 −0.165316
\(87\) −764.510 −0.942115
\(88\) −86.5458 −0.104839
\(89\) −879.672 −1.04770 −0.523849 0.851811i \(-0.675504\pi\)
−0.523849 + 0.851811i \(0.675504\pi\)
\(90\) 163.712 0.191742
\(91\) 1027.43 1.18356
\(92\) 92.0000 0.104257
\(93\) −538.971 −0.600954
\(94\) −220.557 −0.242008
\(95\) 96.6607 0.104391
\(96\) −104.326 −0.110914
\(97\) −938.437 −0.982308 −0.491154 0.871073i \(-0.663425\pi\)
−0.491154 + 0.871073i \(0.663425\pi\)
\(98\) 858.801 0.885224
\(99\) 177.107 0.179798
\(100\) 100.000 0.100000
\(101\) −688.428 −0.678229 −0.339114 0.940745i \(-0.610127\pi\)
−0.339114 + 0.940745i \(0.610127\pi\)
\(102\) −775.899 −0.753190
\(103\) 2041.55 1.95301 0.976504 0.215500i \(-0.0691381\pi\)
0.976504 + 0.215500i \(0.0691381\pi\)
\(104\) 295.746 0.278849
\(105\) 453.037 0.421065
\(106\) −1376.27 −1.26109
\(107\) 287.420 0.259682 0.129841 0.991535i \(-0.458553\pi\)
0.129841 + 0.991535i \(0.458553\pi\)
\(108\) 565.592 0.503927
\(109\) −1211.29 −1.06441 −0.532204 0.846616i \(-0.678636\pi\)
−0.532204 + 0.846616i \(0.678636\pi\)
\(110\) 108.182 0.0937707
\(111\) −659.537 −0.563968
\(112\) 444.673 0.375158
\(113\) 741.316 0.617143 0.308571 0.951201i \(-0.400149\pi\)
0.308571 + 0.951201i \(0.400149\pi\)
\(114\) 126.053 0.103561
\(115\) −115.000 −0.0932505
\(116\) 937.996 0.750782
\(117\) −605.215 −0.478224
\(118\) 21.1694 0.0165153
\(119\) 3307.15 2.54761
\(120\) 130.407 0.0992043
\(121\) −1213.97 −0.912071
\(122\) 221.157 0.164120
\(123\) 964.513 0.707050
\(124\) 661.277 0.478907
\(125\) −125.000 −0.0894427
\(126\) −909.980 −0.643392
\(127\) 1579.99 1.10395 0.551976 0.833860i \(-0.313874\pi\)
0.551976 + 0.833860i \(0.313874\pi\)
\(128\) 128.000 0.0883883
\(129\) 214.918 0.146686
\(130\) −369.683 −0.249410
\(131\) −2348.86 −1.56657 −0.783285 0.621662i \(-0.786458\pi\)
−0.783285 + 0.621662i \(0.786458\pi\)
\(132\) 141.078 0.0930245
\(133\) −537.280 −0.350287
\(134\) −1286.58 −0.829430
\(135\) −706.991 −0.450726
\(136\) 951.969 0.600225
\(137\) −617.567 −0.385127 −0.192563 0.981285i \(-0.561680\pi\)
−0.192563 + 0.981285i \(0.561680\pi\)
\(138\) −149.968 −0.0925084
\(139\) 1509.75 0.921260 0.460630 0.887592i \(-0.347623\pi\)
0.460630 + 0.887592i \(0.347623\pi\)
\(140\) −555.842 −0.335551
\(141\) 359.529 0.214736
\(142\) 286.432 0.169274
\(143\) −399.932 −0.233874
\(144\) −261.939 −0.151585
\(145\) −1172.49 −0.671520
\(146\) −316.427 −0.179368
\(147\) −1399.92 −0.785468
\(148\) 809.202 0.449432
\(149\) 1025.46 0.563818 0.281909 0.959441i \(-0.409032\pi\)
0.281909 + 0.959441i \(0.409032\pi\)
\(150\) −163.009 −0.0887310
\(151\) −1516.67 −0.817383 −0.408692 0.912672i \(-0.634015\pi\)
−0.408692 + 0.912672i \(0.634015\pi\)
\(152\) −154.657 −0.0825286
\(153\) −1948.11 −1.02938
\(154\) −601.322 −0.314649
\(155\) −826.596 −0.428347
\(156\) −482.094 −0.247426
\(157\) −2757.31 −1.40164 −0.700819 0.713339i \(-0.747182\pi\)
−0.700819 + 0.713339i \(0.747182\pi\)
\(158\) 2246.69 1.13125
\(159\) 2243.45 1.11897
\(160\) −160.000 −0.0790569
\(161\) 639.218 0.312903
\(162\) −37.9231 −0.0183921
\(163\) 1263.29 0.607047 0.303524 0.952824i \(-0.401837\pi\)
0.303524 + 0.952824i \(0.401837\pi\)
\(164\) −1183.38 −0.563456
\(165\) −176.347 −0.0832037
\(166\) −1649.20 −0.771101
\(167\) −349.646 −0.162014 −0.0810072 0.996714i \(-0.525814\pi\)
−0.0810072 + 0.996714i \(0.525814\pi\)
\(168\) −724.859 −0.332881
\(169\) −830.344 −0.377945
\(170\) −1189.96 −0.536858
\(171\) 316.490 0.141536
\(172\) −263.689 −0.116896
\(173\) 2313.83 1.01686 0.508432 0.861102i \(-0.330225\pi\)
0.508432 + 0.861102i \(0.330225\pi\)
\(174\) −1529.02 −0.666176
\(175\) 694.802 0.300126
\(176\) −173.092 −0.0741322
\(177\) −34.5081 −0.0146542
\(178\) −1759.34 −0.740834
\(179\) −2347.69 −0.980306 −0.490153 0.871636i \(-0.663059\pi\)
−0.490153 + 0.871636i \(0.663059\pi\)
\(180\) 327.424 0.135582
\(181\) 4396.31 1.80539 0.902695 0.430282i \(-0.141586\pi\)
0.902695 + 0.430282i \(0.141586\pi\)
\(182\) 2054.85 0.836900
\(183\) −360.507 −0.145625
\(184\) 184.000 0.0737210
\(185\) −1011.50 −0.401985
\(186\) −1077.94 −0.424939
\(187\) −1287.33 −0.503415
\(188\) −441.115 −0.171126
\(189\) 3929.75 1.51242
\(190\) 193.321 0.0738158
\(191\) 4153.14 1.57335 0.786677 0.617365i \(-0.211800\pi\)
0.786677 + 0.617365i \(0.211800\pi\)
\(192\) −208.652 −0.0784278
\(193\) −1020.52 −0.380616 −0.190308 0.981724i \(-0.560949\pi\)
−0.190308 + 0.981724i \(0.560949\pi\)
\(194\) −1876.87 −0.694596
\(195\) 602.617 0.221304
\(196\) 1717.60 0.625948
\(197\) −398.643 −0.144173 −0.0720866 0.997398i \(-0.522966\pi\)
−0.0720866 + 0.997398i \(0.522966\pi\)
\(198\) 354.215 0.127136
\(199\) 4131.40 1.47169 0.735847 0.677148i \(-0.236784\pi\)
0.735847 + 0.677148i \(0.236784\pi\)
\(200\) 200.000 0.0707107
\(201\) 2097.24 0.735961
\(202\) −1376.86 −0.479580
\(203\) 6517.22 2.25329
\(204\) −1551.80 −0.532586
\(205\) 1479.23 0.503970
\(206\) 4083.10 1.38098
\(207\) −376.538 −0.126431
\(208\) 591.493 0.197176
\(209\) 209.139 0.0692176
\(210\) 906.073 0.297738
\(211\) 826.315 0.269601 0.134801 0.990873i \(-0.456961\pi\)
0.134801 + 0.990873i \(0.456961\pi\)
\(212\) −2752.54 −0.891723
\(213\) −466.911 −0.150198
\(214\) 574.840 0.183623
\(215\) 329.611 0.104555
\(216\) 1131.18 0.356330
\(217\) 4594.57 1.43733
\(218\) −2422.58 −0.752650
\(219\) 515.805 0.159155
\(220\) 216.365 0.0663059
\(221\) 4399.08 1.33898
\(222\) −1319.07 −0.398786
\(223\) 1110.09 0.333351 0.166676 0.986012i \(-0.446697\pi\)
0.166676 + 0.986012i \(0.446697\pi\)
\(224\) 889.347 0.265277
\(225\) −409.280 −0.121268
\(226\) 1482.63 0.436386
\(227\) −4917.90 −1.43794 −0.718971 0.695040i \(-0.755386\pi\)
−0.718971 + 0.695040i \(0.755386\pi\)
\(228\) 252.105 0.0732284
\(229\) −1390.62 −0.401288 −0.200644 0.979664i \(-0.564304\pi\)
−0.200644 + 0.979664i \(0.564304\pi\)
\(230\) −230.000 −0.0659380
\(231\) 980.211 0.279191
\(232\) 1875.99 0.530883
\(233\) −3409.59 −0.958668 −0.479334 0.877633i \(-0.659122\pi\)
−0.479334 + 0.877633i \(0.659122\pi\)
\(234\) −1210.43 −0.338155
\(235\) 551.394 0.153059
\(236\) 42.3388 0.0116781
\(237\) −3662.31 −1.00377
\(238\) 6614.30 1.80143
\(239\) 2056.35 0.556544 0.278272 0.960502i \(-0.410238\pi\)
0.278272 + 0.960502i \(0.410238\pi\)
\(240\) 260.815 0.0701480
\(241\) −1957.03 −0.523085 −0.261543 0.965192i \(-0.584231\pi\)
−0.261543 + 0.965192i \(0.584231\pi\)
\(242\) −2427.93 −0.644931
\(243\) −3755.93 −0.991535
\(244\) 442.315 0.116050
\(245\) −2147.00 −0.559865
\(246\) 1929.03 0.499960
\(247\) −714.676 −0.184104
\(248\) 1322.55 0.338638
\(249\) 2688.35 0.684205
\(250\) −250.000 −0.0632456
\(251\) −1954.13 −0.491410 −0.245705 0.969345i \(-0.579019\pi\)
−0.245705 + 0.969345i \(0.579019\pi\)
\(252\) −1819.96 −0.454947
\(253\) −248.819 −0.0618306
\(254\) 3159.99 0.780612
\(255\) 1939.75 0.476359
\(256\) 256.000 0.0625000
\(257\) 1958.40 0.475338 0.237669 0.971346i \(-0.423617\pi\)
0.237669 + 0.971346i \(0.423617\pi\)
\(258\) 429.837 0.103723
\(259\) 5622.35 1.34887
\(260\) −739.366 −0.176360
\(261\) −3839.03 −0.910459
\(262\) −4697.72 −1.10773
\(263\) 7205.23 1.68933 0.844665 0.535295i \(-0.179800\pi\)
0.844665 + 0.535295i \(0.179800\pi\)
\(264\) 282.155 0.0657783
\(265\) 3440.67 0.797581
\(266\) −1074.56 −0.247690
\(267\) 2867.89 0.657349
\(268\) −2573.16 −0.586496
\(269\) −3764.30 −0.853210 −0.426605 0.904438i \(-0.640291\pi\)
−0.426605 + 0.904438i \(0.640291\pi\)
\(270\) −1413.98 −0.318712
\(271\) −5208.88 −1.16759 −0.583795 0.811901i \(-0.698433\pi\)
−0.583795 + 0.811901i \(0.698433\pi\)
\(272\) 1903.94 0.424423
\(273\) −3349.60 −0.742590
\(274\) −1235.13 −0.272326
\(275\) −270.456 −0.0593058
\(276\) −299.937 −0.0654133
\(277\) 1550.21 0.336256 0.168128 0.985765i \(-0.446228\pi\)
0.168128 + 0.985765i \(0.446228\pi\)
\(278\) 3019.50 0.651430
\(279\) −2706.47 −0.580761
\(280\) −1111.68 −0.237271
\(281\) 7997.53 1.69784 0.848920 0.528522i \(-0.177254\pi\)
0.848920 + 0.528522i \(0.177254\pi\)
\(282\) 719.058 0.151841
\(283\) −5808.41 −1.22005 −0.610025 0.792382i \(-0.708841\pi\)
−0.610025 + 0.792382i \(0.708841\pi\)
\(284\) 572.864 0.119695
\(285\) −315.132 −0.0654975
\(286\) −799.863 −0.165374
\(287\) −8222.18 −1.69108
\(288\) −523.878 −0.107187
\(289\) 9247.08 1.88216
\(290\) −2344.99 −0.474836
\(291\) 3059.48 0.616322
\(292\) −632.854 −0.126832
\(293\) −8854.66 −1.76551 −0.882756 0.469832i \(-0.844314\pi\)
−0.882756 + 0.469832i \(0.844314\pi\)
\(294\) −2799.85 −0.555410
\(295\) −52.9235 −0.0104452
\(296\) 1618.40 0.317797
\(297\) −1529.68 −0.298858
\(298\) 2050.92 0.398680
\(299\) 850.271 0.164456
\(300\) −326.018 −0.0627423
\(301\) −1832.11 −0.350835
\(302\) −3033.34 −0.577977
\(303\) 2244.40 0.425536
\(304\) −309.314 −0.0583565
\(305\) −552.893 −0.103799
\(306\) −3896.22 −0.727882
\(307\) −1501.03 −0.279050 −0.139525 0.990219i \(-0.544557\pi\)
−0.139525 + 0.990219i \(0.544557\pi\)
\(308\) −1202.64 −0.222490
\(309\) −6655.83 −1.22536
\(310\) −1653.19 −0.302887
\(311\) −7440.48 −1.35663 −0.678313 0.734773i \(-0.737289\pi\)
−0.678313 + 0.734773i \(0.737289\pi\)
\(312\) −964.188 −0.174956
\(313\) −2528.63 −0.456634 −0.228317 0.973587i \(-0.573322\pi\)
−0.228317 + 0.973587i \(0.573322\pi\)
\(314\) −5514.61 −0.991107
\(315\) 2274.95 0.406917
\(316\) 4493.38 0.799912
\(317\) −9636.72 −1.70742 −0.853710 0.520749i \(-0.825653\pi\)
−0.853710 + 0.520749i \(0.825653\pi\)
\(318\) 4486.89 0.791234
\(319\) −2536.86 −0.445257
\(320\) −320.000 −0.0559017
\(321\) −937.042 −0.162930
\(322\) 1278.44 0.221256
\(323\) −2300.45 −0.396286
\(324\) −75.8462 −0.0130052
\(325\) 924.208 0.157741
\(326\) 2526.58 0.429247
\(327\) 3949.03 0.667834
\(328\) −2366.77 −0.398424
\(329\) −3064.88 −0.513593
\(330\) −352.694 −0.0588339
\(331\) 2875.82 0.477551 0.238776 0.971075i \(-0.423254\pi\)
0.238776 + 0.971075i \(0.423254\pi\)
\(332\) −3298.40 −0.545251
\(333\) −3311.90 −0.545018
\(334\) −699.291 −0.114561
\(335\) 3216.45 0.524578
\(336\) −1449.72 −0.235383
\(337\) 9911.19 1.60207 0.801034 0.598619i \(-0.204283\pi\)
0.801034 + 0.598619i \(0.204283\pi\)
\(338\) −1660.69 −0.267247
\(339\) −2416.83 −0.387209
\(340\) −2379.92 −0.379616
\(341\) −1788.46 −0.284019
\(342\) 632.980 0.100081
\(343\) 2401.24 0.378003
\(344\) −527.377 −0.0826578
\(345\) 374.921 0.0585075
\(346\) 4627.67 0.719031
\(347\) 4497.70 0.695820 0.347910 0.937528i \(-0.386892\pi\)
0.347910 + 0.937528i \(0.386892\pi\)
\(348\) −3058.04 −0.471058
\(349\) 888.112 0.136216 0.0681082 0.997678i \(-0.478304\pi\)
0.0681082 + 0.997678i \(0.478304\pi\)
\(350\) 1389.60 0.212221
\(351\) 5227.25 0.794900
\(352\) −346.183 −0.0524194
\(353\) −11722.2 −1.76745 −0.883727 0.468002i \(-0.844974\pi\)
−0.883727 + 0.468002i \(0.844974\pi\)
\(354\) −69.0161 −0.0103621
\(355\) −716.081 −0.107058
\(356\) −3518.69 −0.523849
\(357\) −10781.9 −1.59843
\(358\) −4695.39 −0.693181
\(359\) −1257.49 −0.184869 −0.0924343 0.995719i \(-0.529465\pi\)
−0.0924343 + 0.995719i \(0.529465\pi\)
\(360\) 654.848 0.0958709
\(361\) −6485.27 −0.945512
\(362\) 8792.63 1.27660
\(363\) 3957.75 0.572254
\(364\) 4109.71 0.591778
\(365\) 791.067 0.113442
\(366\) −721.014 −0.102973
\(367\) 10122.2 1.43972 0.719859 0.694120i \(-0.244206\pi\)
0.719859 + 0.694120i \(0.244206\pi\)
\(368\) 368.000 0.0521286
\(369\) 4843.36 0.683293
\(370\) −2023.01 −0.284246
\(371\) −19124.7 −2.67629
\(372\) −2155.89 −0.300477
\(373\) 6530.08 0.906473 0.453237 0.891390i \(-0.350269\pi\)
0.453237 + 0.891390i \(0.350269\pi\)
\(374\) −2574.65 −0.355968
\(375\) 407.523 0.0561184
\(376\) −882.230 −0.121004
\(377\) 8669.03 1.18429
\(378\) 7859.50 1.06944
\(379\) 277.850 0.0376575 0.0188288 0.999823i \(-0.494006\pi\)
0.0188288 + 0.999823i \(0.494006\pi\)
\(380\) 386.643 0.0521957
\(381\) −5151.07 −0.692644
\(382\) 8306.28 1.11253
\(383\) −10679.6 −1.42482 −0.712408 0.701766i \(-0.752395\pi\)
−0.712408 + 0.701766i \(0.752395\pi\)
\(384\) −417.304 −0.0554569
\(385\) 1503.31 0.199001
\(386\) −2041.05 −0.269136
\(387\) 1079.22 0.141757
\(388\) −3753.75 −0.491154
\(389\) 1546.05 0.201511 0.100756 0.994911i \(-0.467874\pi\)
0.100756 + 0.994911i \(0.467874\pi\)
\(390\) 1205.23 0.156486
\(391\) 2736.91 0.353994
\(392\) 3435.20 0.442612
\(393\) 7657.71 0.982902
\(394\) −797.285 −0.101946
\(395\) −5616.72 −0.715463
\(396\) 708.429 0.0898988
\(397\) −12901.8 −1.63103 −0.815517 0.578733i \(-0.803547\pi\)
−0.815517 + 0.578733i \(0.803547\pi\)
\(398\) 8262.80 1.04064
\(399\) 1751.63 0.219778
\(400\) 400.000 0.0500000
\(401\) −8534.31 −1.06280 −0.531400 0.847121i \(-0.678334\pi\)
−0.531400 + 0.847121i \(0.678334\pi\)
\(402\) 4194.49 0.520403
\(403\) 6111.57 0.755432
\(404\) −2753.71 −0.339114
\(405\) 94.8078 0.0116322
\(406\) 13034.4 1.59332
\(407\) −2188.53 −0.266539
\(408\) −3103.59 −0.376595
\(409\) 650.968 0.0787000 0.0393500 0.999225i \(-0.487471\pi\)
0.0393500 + 0.999225i \(0.487471\pi\)
\(410\) 2958.46 0.356361
\(411\) 2013.38 0.241637
\(412\) 8166.20 0.976504
\(413\) 294.171 0.0350489
\(414\) −753.075 −0.0894001
\(415\) 4123.00 0.487687
\(416\) 1182.99 0.139425
\(417\) −4922.06 −0.578020
\(418\) 418.279 0.0489442
\(419\) 13266.2 1.54677 0.773384 0.633938i \(-0.218563\pi\)
0.773384 + 0.633938i \(0.218563\pi\)
\(420\) 1812.15 0.210533
\(421\) −8274.69 −0.957918 −0.478959 0.877837i \(-0.658986\pi\)
−0.478959 + 0.877837i \(0.658986\pi\)
\(422\) 1652.63 0.190637
\(423\) 1805.39 0.207521
\(424\) −5505.08 −0.630543
\(425\) 2974.90 0.339539
\(426\) −933.822 −0.106206
\(427\) 3073.21 0.348298
\(428\) 1149.68 0.129841
\(429\) 1303.85 0.146738
\(430\) 659.221 0.0739314
\(431\) 724.084 0.0809232 0.0404616 0.999181i \(-0.487117\pi\)
0.0404616 + 0.999181i \(0.487117\pi\)
\(432\) 2262.37 0.251964
\(433\) −11996.5 −1.33145 −0.665724 0.746198i \(-0.731877\pi\)
−0.665724 + 0.746198i \(0.731877\pi\)
\(434\) 9189.14 1.01634
\(435\) 3822.55 0.421327
\(436\) −4845.16 −0.532204
\(437\) −444.639 −0.0486727
\(438\) 1031.61 0.112539
\(439\) −7765.40 −0.844242 −0.422121 0.906539i \(-0.638714\pi\)
−0.422121 + 0.906539i \(0.638714\pi\)
\(440\) 432.729 0.0468853
\(441\) −7029.80 −0.759075
\(442\) 8798.17 0.946801
\(443\) −9061.54 −0.971844 −0.485922 0.874002i \(-0.661516\pi\)
−0.485922 + 0.874002i \(0.661516\pi\)
\(444\) −2638.15 −0.281984
\(445\) 4398.36 0.468544
\(446\) 2220.19 0.235715
\(447\) −3343.19 −0.353752
\(448\) 1778.69 0.187579
\(449\) −10944.3 −1.15032 −0.575159 0.818041i \(-0.695060\pi\)
−0.575159 + 0.818041i \(0.695060\pi\)
\(450\) −818.560 −0.0857495
\(451\) 3200.53 0.334162
\(452\) 2965.26 0.308571
\(453\) 4944.63 0.512845
\(454\) −9835.81 −1.01678
\(455\) −5137.13 −0.529302
\(456\) 504.211 0.0517803
\(457\) 10934.9 1.11928 0.559641 0.828735i \(-0.310939\pi\)
0.559641 + 0.828735i \(0.310939\pi\)
\(458\) −2781.25 −0.283754
\(459\) 16825.8 1.71103
\(460\) −460.000 −0.0466252
\(461\) 2652.25 0.267956 0.133978 0.990984i \(-0.457225\pi\)
0.133978 + 0.990984i \(0.457225\pi\)
\(462\) 1960.42 0.197418
\(463\) 707.699 0.0710358 0.0355179 0.999369i \(-0.488692\pi\)
0.0355179 + 0.999369i \(0.488692\pi\)
\(464\) 3751.98 0.375391
\(465\) 2694.86 0.268755
\(466\) −6819.18 −0.677880
\(467\) −10671.1 −1.05738 −0.528691 0.848814i \(-0.677317\pi\)
−0.528691 + 0.848814i \(0.677317\pi\)
\(468\) −2420.86 −0.239112
\(469\) −17878.4 −1.76023
\(470\) 1102.79 0.108229
\(471\) 8989.33 0.879419
\(472\) 84.6776 0.00825763
\(473\) 713.161 0.0693259
\(474\) −7324.62 −0.709770
\(475\) −483.303 −0.0466852
\(476\) 13228.6 1.27381
\(477\) 11265.6 1.08138
\(478\) 4112.69 0.393536
\(479\) 1951.17 0.186119 0.0930597 0.995661i \(-0.470335\pi\)
0.0930597 + 0.995661i \(0.470335\pi\)
\(480\) 521.630 0.0496021
\(481\) 7478.71 0.708939
\(482\) −3914.06 −0.369877
\(483\) −2083.97 −0.196323
\(484\) −4855.86 −0.456035
\(485\) 4692.18 0.439301
\(486\) −7511.86 −0.701121
\(487\) 17071.2 1.58844 0.794220 0.607630i \(-0.207880\pi\)
0.794220 + 0.607630i \(0.207880\pi\)
\(488\) 884.629 0.0820600
\(489\) −4118.57 −0.380875
\(490\) −4294.00 −0.395884
\(491\) 16979.9 1.56067 0.780337 0.625359i \(-0.215047\pi\)
0.780337 + 0.625359i \(0.215047\pi\)
\(492\) 3858.05 0.353525
\(493\) 27904.5 2.54920
\(494\) −1429.35 −0.130181
\(495\) −885.537 −0.0804079
\(496\) 2645.11 0.239453
\(497\) 3980.28 0.359235
\(498\) 5376.70 0.483806
\(499\) −2788.83 −0.250191 −0.125095 0.992145i \(-0.539924\pi\)
−0.125095 + 0.992145i \(0.539924\pi\)
\(500\) −500.000 −0.0447214
\(501\) 1139.91 0.101651
\(502\) −3908.27 −0.347479
\(503\) −15525.1 −1.37620 −0.688102 0.725614i \(-0.741556\pi\)
−0.688102 + 0.725614i \(0.741556\pi\)
\(504\) −3639.92 −0.321696
\(505\) 3442.14 0.303313
\(506\) −497.638 −0.0437208
\(507\) 2707.08 0.237131
\(508\) 6319.98 0.551976
\(509\) 9039.20 0.787143 0.393571 0.919294i \(-0.371239\pi\)
0.393571 + 0.919294i \(0.371239\pi\)
\(510\) 3879.49 0.336837
\(511\) −4397.08 −0.380657
\(512\) 512.000 0.0441942
\(513\) −2733.53 −0.235260
\(514\) 3916.81 0.336115
\(515\) −10207.7 −0.873412
\(516\) 859.673 0.0733430
\(517\) 1193.02 0.101487
\(518\) 11244.7 0.953792
\(519\) −7543.52 −0.638004
\(520\) −1478.73 −0.124705
\(521\) 1093.03 0.0919128 0.0459564 0.998943i \(-0.485366\pi\)
0.0459564 + 0.998943i \(0.485366\pi\)
\(522\) −7678.06 −0.643792
\(523\) −4660.98 −0.389695 −0.194848 0.980834i \(-0.562421\pi\)
−0.194848 + 0.980834i \(0.562421\pi\)
\(524\) −9395.44 −0.783285
\(525\) −2265.18 −0.188306
\(526\) 14410.5 1.19454
\(527\) 19672.4 1.62607
\(528\) 564.311 0.0465123
\(529\) 529.000 0.0434783
\(530\) 6881.35 0.563975
\(531\) −173.284 −0.0141618
\(532\) −2149.12 −0.175143
\(533\) −10936.9 −0.888801
\(534\) 5735.79 0.464816
\(535\) −1437.10 −0.116133
\(536\) −5146.32 −0.414715
\(537\) 7653.91 0.615066
\(538\) −7528.60 −0.603311
\(539\) −4645.35 −0.371223
\(540\) −2827.96 −0.225363
\(541\) −8072.40 −0.641515 −0.320757 0.947161i \(-0.603937\pi\)
−0.320757 + 0.947161i \(0.603937\pi\)
\(542\) −10417.8 −0.825611
\(543\) −14332.8 −1.13274
\(544\) 3807.88 0.300113
\(545\) 6056.45 0.476018
\(546\) −6699.20 −0.525090
\(547\) −2877.27 −0.224905 −0.112452 0.993657i \(-0.535871\pi\)
−0.112452 + 0.993657i \(0.535871\pi\)
\(548\) −2470.27 −0.192563
\(549\) −1810.31 −0.140732
\(550\) −540.911 −0.0419355
\(551\) −4533.36 −0.350504
\(552\) −599.874 −0.0462542
\(553\) 31220.1 2.40075
\(554\) 3100.42 0.237769
\(555\) 3297.69 0.252214
\(556\) 6038.99 0.460630
\(557\) 15928.7 1.21171 0.605855 0.795575i \(-0.292831\pi\)
0.605855 + 0.795575i \(0.292831\pi\)
\(558\) −5412.95 −0.410660
\(559\) −2437.03 −0.184392
\(560\) −2223.37 −0.167776
\(561\) 4196.92 0.315854
\(562\) 15995.1 1.20055
\(563\) 7988.51 0.598003 0.299001 0.954253i \(-0.403346\pi\)
0.299001 + 0.954253i \(0.403346\pi\)
\(564\) 1438.12 0.107368
\(565\) −3706.58 −0.275995
\(566\) −11616.8 −0.862706
\(567\) −526.981 −0.0390320
\(568\) 1145.73 0.0846368
\(569\) −6429.49 −0.473705 −0.236853 0.971546i \(-0.576116\pi\)
−0.236853 + 0.971546i \(0.576116\pi\)
\(570\) −630.263 −0.0463137
\(571\) 2886.51 0.211553 0.105776 0.994390i \(-0.466267\pi\)
0.105776 + 0.994390i \(0.466267\pi\)
\(572\) −1599.73 −0.116937
\(573\) −13540.0 −0.987158
\(574\) −16444.4 −1.19577
\(575\) 575.000 0.0417029
\(576\) −1047.76 −0.0757926
\(577\) −9966.59 −0.719089 −0.359545 0.933128i \(-0.617068\pi\)
−0.359545 + 0.933128i \(0.617068\pi\)
\(578\) 18494.2 1.33089
\(579\) 3327.10 0.238807
\(580\) −4689.98 −0.335760
\(581\) −22917.4 −1.63644
\(582\) 6118.95 0.435806
\(583\) 7444.40 0.528843
\(584\) −1265.71 −0.0896838
\(585\) 3026.08 0.213868
\(586\) −17709.3 −1.24841
\(587\) −3522.91 −0.247710 −0.123855 0.992300i \(-0.539526\pi\)
−0.123855 + 0.992300i \(0.539526\pi\)
\(588\) −5599.70 −0.392734
\(589\) −3195.97 −0.223579
\(590\) −105.847 −0.00738585
\(591\) 1299.65 0.0904575
\(592\) 3236.81 0.224716
\(593\) −28713.0 −1.98837 −0.994184 0.107695i \(-0.965653\pi\)
−0.994184 + 0.107695i \(0.965653\pi\)
\(594\) −3059.35 −0.211325
\(595\) −16535.8 −1.13933
\(596\) 4101.84 0.281909
\(597\) −13469.1 −0.923374
\(598\) 1700.54 0.116288
\(599\) 7736.44 0.527717 0.263858 0.964561i \(-0.415005\pi\)
0.263858 + 0.964561i \(0.415005\pi\)
\(600\) −652.037 −0.0443655
\(601\) −3863.89 −0.262249 −0.131124 0.991366i \(-0.541859\pi\)
−0.131124 + 0.991366i \(0.541859\pi\)
\(602\) −3664.23 −0.248078
\(603\) 10531.4 0.711232
\(604\) −6066.68 −0.408692
\(605\) 6069.83 0.407890
\(606\) 4488.80 0.300900
\(607\) 24954.6 1.66866 0.834330 0.551265i \(-0.185855\pi\)
0.834330 + 0.551265i \(0.185855\pi\)
\(608\) −618.628 −0.0412643
\(609\) −21247.3 −1.41377
\(610\) −1105.79 −0.0733967
\(611\) −4076.82 −0.269935
\(612\) −7792.44 −0.514690
\(613\) 12712.0 0.837574 0.418787 0.908085i \(-0.362455\pi\)
0.418787 + 0.908085i \(0.362455\pi\)
\(614\) −3002.06 −0.197318
\(615\) −4822.56 −0.316203
\(616\) −2405.29 −0.157324
\(617\) 11017.6 0.718884 0.359442 0.933167i \(-0.382967\pi\)
0.359442 + 0.933167i \(0.382967\pi\)
\(618\) −13311.7 −0.866461
\(619\) 6859.65 0.445416 0.222708 0.974885i \(-0.428510\pi\)
0.222708 + 0.974885i \(0.428510\pi\)
\(620\) −3306.39 −0.214174
\(621\) 3252.16 0.210152
\(622\) −14881.0 −0.959280
\(623\) −24447.9 −1.57221
\(624\) −1928.38 −0.123713
\(625\) 625.000 0.0400000
\(626\) −5057.25 −0.322889
\(627\) −681.833 −0.0434287
\(628\) −11029.2 −0.700819
\(629\) 24073.0 1.52600
\(630\) 4549.90 0.287734
\(631\) −14104.0 −0.889815 −0.444907 0.895577i \(-0.646763\pi\)
−0.444907 + 0.895577i \(0.646763\pi\)
\(632\) 8986.75 0.565623
\(633\) −2693.94 −0.169154
\(634\) −19273.4 −1.20733
\(635\) −7899.97 −0.493702
\(636\) 8973.79 0.559487
\(637\) 15874.2 0.987376
\(638\) −5073.73 −0.314844
\(639\) −2344.62 −0.145151
\(640\) −640.000 −0.0395285
\(641\) −144.931 −0.00893047 −0.00446524 0.999990i \(-0.501421\pi\)
−0.00446524 + 0.999990i \(0.501421\pi\)
\(642\) −1874.08 −0.115209
\(643\) 30891.4 1.89461 0.947307 0.320328i \(-0.103793\pi\)
0.947307 + 0.320328i \(0.103793\pi\)
\(644\) 2556.87 0.156452
\(645\) −1074.59 −0.0656000
\(646\) −4600.90 −0.280217
\(647\) 22784.1 1.38444 0.692222 0.721684i \(-0.256632\pi\)
0.692222 + 0.721684i \(0.256632\pi\)
\(648\) −151.692 −0.00919605
\(649\) −114.508 −0.00692576
\(650\) 1848.42 0.111540
\(651\) −14979.1 −0.901811
\(652\) 5053.17 0.303524
\(653\) −32125.7 −1.92523 −0.962617 0.270868i \(-0.912689\pi\)
−0.962617 + 0.270868i \(0.912689\pi\)
\(654\) 7898.05 0.472230
\(655\) 11744.3 0.700592
\(656\) −4733.54 −0.281728
\(657\) 2590.14 0.153807
\(658\) −6129.75 −0.363165
\(659\) 15521.7 0.917508 0.458754 0.888563i \(-0.348296\pi\)
0.458754 + 0.888563i \(0.348296\pi\)
\(660\) −705.388 −0.0416018
\(661\) 19428.4 1.14323 0.571617 0.820521i \(-0.306316\pi\)
0.571617 + 0.820521i \(0.306316\pi\)
\(662\) 5751.64 0.337680
\(663\) −14341.8 −0.840106
\(664\) −6596.80 −0.385550
\(665\) 2686.40 0.156653
\(666\) −6623.80 −0.385386
\(667\) 5393.48 0.313098
\(668\) −1398.58 −0.0810072
\(669\) −3619.11 −0.209152
\(670\) 6432.90 0.370932
\(671\) −1196.27 −0.0688246
\(672\) −2899.43 −0.166441
\(673\) 18992.7 1.08784 0.543919 0.839138i \(-0.316940\pi\)
0.543919 + 0.839138i \(0.316940\pi\)
\(674\) 19822.4 1.13283
\(675\) 3534.95 0.201571
\(676\) −3321.38 −0.188972
\(677\) 19104.3 1.08455 0.542273 0.840202i \(-0.317564\pi\)
0.542273 + 0.840202i \(0.317564\pi\)
\(678\) −4833.65 −0.273798
\(679\) −26081.1 −1.47408
\(680\) −4759.84 −0.268429
\(681\) 16033.3 0.902197
\(682\) −3576.92 −0.200832
\(683\) −24737.2 −1.38586 −0.692931 0.721004i \(-0.743681\pi\)
−0.692931 + 0.721004i \(0.743681\pi\)
\(684\) 1265.96 0.0707679
\(685\) 3087.84 0.172234
\(686\) 4802.49 0.267288
\(687\) 4533.69 0.251778
\(688\) −1054.75 −0.0584479
\(689\) −25439.2 −1.40661
\(690\) 749.842 0.0413710
\(691\) 12957.9 0.713373 0.356687 0.934224i \(-0.383906\pi\)
0.356687 + 0.934224i \(0.383906\pi\)
\(692\) 9255.33 0.508432
\(693\) 4922.18 0.269810
\(694\) 8995.41 0.492019
\(695\) −7548.74 −0.412000
\(696\) −6116.08 −0.333088
\(697\) −35204.5 −1.91315
\(698\) 1776.22 0.0963195
\(699\) 11115.9 0.601490
\(700\) 2779.21 0.150063
\(701\) 20730.7 1.11696 0.558478 0.829519i \(-0.311385\pi\)
0.558478 + 0.829519i \(0.311385\pi\)
\(702\) 10454.5 0.562079
\(703\) −3910.90 −0.209819
\(704\) −692.367 −0.0370661
\(705\) −1797.64 −0.0960329
\(706\) −23444.5 −1.24978
\(707\) −19132.8 −1.01777
\(708\) −138.032 −0.00732708
\(709\) −22191.2 −1.17547 −0.587735 0.809053i \(-0.699980\pi\)
−0.587735 + 0.809053i \(0.699980\pi\)
\(710\) −1432.16 −0.0757015
\(711\) −18390.5 −0.970038
\(712\) −7037.38 −0.370417
\(713\) 3802.34 0.199718
\(714\) −21563.8 −1.13026
\(715\) 1999.66 0.104592
\(716\) −9390.77 −0.490153
\(717\) −6704.07 −0.349188
\(718\) −2514.98 −0.130722
\(719\) −773.962 −0.0401445 −0.0200723 0.999799i \(-0.506390\pi\)
−0.0200723 + 0.999799i \(0.506390\pi\)
\(720\) 1309.70 0.0677909
\(721\) 56738.9 2.93075
\(722\) −12970.5 −0.668578
\(723\) 6380.29 0.328196
\(724\) 17585.3 0.902695
\(725\) 5862.47 0.300313
\(726\) 7915.51 0.404645
\(727\) −32484.7 −1.65721 −0.828604 0.559835i \(-0.810864\pi\)
−0.828604 + 0.559835i \(0.810864\pi\)
\(728\) 8219.41 0.418450
\(729\) 12757.0 0.648122
\(730\) 1582.13 0.0802157
\(731\) −7844.48 −0.396906
\(732\) −1442.03 −0.0728127
\(733\) −13701.5 −0.690416 −0.345208 0.938526i \(-0.612192\pi\)
−0.345208 + 0.938526i \(0.612192\pi\)
\(734\) 20244.5 1.01803
\(735\) 6999.62 0.351272
\(736\) 736.000 0.0368605
\(737\) 6959.26 0.347826
\(738\) 9686.71 0.483161
\(739\) −31474.2 −1.56671 −0.783354 0.621576i \(-0.786493\pi\)
−0.783354 + 0.621576i \(0.786493\pi\)
\(740\) −4046.01 −0.200992
\(741\) 2329.98 0.115511
\(742\) −38249.4 −1.89243
\(743\) 28664.2 1.41533 0.707664 0.706549i \(-0.249749\pi\)
0.707664 + 0.706549i \(0.249749\pi\)
\(744\) −4311.77 −0.212469
\(745\) −5127.30 −0.252147
\(746\) 13060.2 0.640974
\(747\) 13499.7 0.661215
\(748\) −5149.31 −0.251708
\(749\) 7988.00 0.389687
\(750\) 815.046 0.0396817
\(751\) −25904.0 −1.25866 −0.629328 0.777140i \(-0.716670\pi\)
−0.629328 + 0.777140i \(0.716670\pi\)
\(752\) −1764.46 −0.0855628
\(753\) 6370.84 0.308322
\(754\) 17338.1 0.837420
\(755\) 7583.35 0.365545
\(756\) 15719.0 0.756209
\(757\) 2569.70 0.123378 0.0616892 0.998095i \(-0.480351\pi\)
0.0616892 + 0.998095i \(0.480351\pi\)
\(758\) 555.700 0.0266279
\(759\) 811.197 0.0387939
\(760\) 773.285 0.0369079
\(761\) −23219.4 −1.10605 −0.553024 0.833165i \(-0.686526\pi\)
−0.553024 + 0.833165i \(0.686526\pi\)
\(762\) −10302.1 −0.489774
\(763\) −33664.3 −1.59728
\(764\) 16612.6 0.786677
\(765\) 9740.54 0.460353
\(766\) −21359.3 −1.00750
\(767\) 391.298 0.0184211
\(768\) −834.607 −0.0392139
\(769\) 34771.1 1.63053 0.815265 0.579088i \(-0.196591\pi\)
0.815265 + 0.579088i \(0.196591\pi\)
\(770\) 3006.61 0.140715
\(771\) −6384.76 −0.298238
\(772\) −4082.10 −0.190308
\(773\) −36377.2 −1.69262 −0.846312 0.532687i \(-0.821182\pi\)
−0.846312 + 0.532687i \(0.821182\pi\)
\(774\) 2158.45 0.100238
\(775\) 4132.98 0.191563
\(776\) −7507.50 −0.347298
\(777\) −18329.9 −0.846309
\(778\) 3092.10 0.142490
\(779\) 5719.34 0.263051
\(780\) 2410.47 0.110652
\(781\) −1549.34 −0.0709858
\(782\) 5473.82 0.250311
\(783\) 33157.7 1.51336
\(784\) 6870.40 0.312974
\(785\) 13786.5 0.626831
\(786\) 15315.4 0.695017
\(787\) −1814.43 −0.0821824 −0.0410912 0.999155i \(-0.513083\pi\)
−0.0410912 + 0.999155i \(0.513083\pi\)
\(788\) −1594.57 −0.0720866
\(789\) −23490.4 −1.05992
\(790\) −11233.4 −0.505909
\(791\) 20602.7 0.926104
\(792\) 1416.86 0.0635680
\(793\) 4087.91 0.183059
\(794\) −25803.5 −1.15332
\(795\) −11217.2 −0.500420
\(796\) 16525.6 0.735847
\(797\) −7958.23 −0.353695 −0.176848 0.984238i \(-0.556590\pi\)
−0.176848 + 0.984238i \(0.556590\pi\)
\(798\) 3503.27 0.155406
\(799\) −13122.7 −0.581038
\(800\) 800.000 0.0353553
\(801\) 14401.3 0.635261
\(802\) −17068.6 −0.751513
\(803\) 1711.59 0.0752188
\(804\) 8388.98 0.367981
\(805\) −3196.09 −0.139935
\(806\) 12223.1 0.534171
\(807\) 12272.3 0.535323
\(808\) −5507.42 −0.239790
\(809\) 20506.9 0.891203 0.445601 0.895232i \(-0.352990\pi\)
0.445601 + 0.895232i \(0.352990\pi\)
\(810\) 189.616 0.00822520
\(811\) 1962.00 0.0849506 0.0424753 0.999098i \(-0.486476\pi\)
0.0424753 + 0.999098i \(0.486476\pi\)
\(812\) 26068.9 1.12665
\(813\) 16981.9 0.732573
\(814\) −4377.07 −0.188472
\(815\) −6316.46 −0.271480
\(816\) −6207.19 −0.266293
\(817\) 1274.42 0.0545730
\(818\) 1301.94 0.0556493
\(819\) −16820.2 −0.717638
\(820\) 5916.92 0.251985
\(821\) 25168.1 1.06988 0.534941 0.844889i \(-0.320334\pi\)
0.534941 + 0.844889i \(0.320334\pi\)
\(822\) 4026.77 0.170863
\(823\) 3337.33 0.141351 0.0706756 0.997499i \(-0.477484\pi\)
0.0706756 + 0.997499i \(0.477484\pi\)
\(824\) 16332.4 0.690492
\(825\) 881.735 0.0372098
\(826\) 588.342 0.0247833
\(827\) −13087.4 −0.550294 −0.275147 0.961402i \(-0.588727\pi\)
−0.275147 + 0.961402i \(0.588727\pi\)
\(828\) −1506.15 −0.0632154
\(829\) −38486.8 −1.61243 −0.806213 0.591626i \(-0.798486\pi\)
−0.806213 + 0.591626i \(0.798486\pi\)
\(830\) 8246.00 0.344847
\(831\) −5053.97 −0.210975
\(832\) 2365.97 0.0985881
\(833\) 51097.0 2.12534
\(834\) −9844.12 −0.408722
\(835\) 1748.23 0.0724550
\(836\) 836.558 0.0346088
\(837\) 23375.8 0.965337
\(838\) 26532.4 1.09373
\(839\) 8192.40 0.337107 0.168554 0.985692i \(-0.446090\pi\)
0.168554 + 0.985692i \(0.446090\pi\)
\(840\) 3624.29 0.148869
\(841\) 30600.7 1.25469
\(842\) −16549.4 −0.677350
\(843\) −26073.4 −1.06526
\(844\) 3305.26 0.134801
\(845\) 4151.72 0.169022
\(846\) 3610.79 0.146739
\(847\) −33738.7 −1.36868
\(848\) −11010.2 −0.445861
\(849\) 18936.5 0.765487
\(850\) 5949.81 0.240090
\(851\) 4652.91 0.187426
\(852\) −1867.64 −0.0750991
\(853\) −6774.83 −0.271941 −0.135971 0.990713i \(-0.543415\pi\)
−0.135971 + 0.990713i \(0.543415\pi\)
\(854\) 6146.42 0.246284
\(855\) −1582.45 −0.0632967
\(856\) 2299.36 0.0918113
\(857\) 19272.3 0.768177 0.384089 0.923296i \(-0.374516\pi\)
0.384089 + 0.923296i \(0.374516\pi\)
\(858\) 2607.70 0.103759
\(859\) −5991.11 −0.237968 −0.118984 0.992896i \(-0.537964\pi\)
−0.118984 + 0.992896i \(0.537964\pi\)
\(860\) 1318.44 0.0522774
\(861\) 26805.8 1.06102
\(862\) 1448.17 0.0572214
\(863\) 20711.4 0.816945 0.408472 0.912771i \(-0.366062\pi\)
0.408472 + 0.912771i \(0.366062\pi\)
\(864\) 4524.74 0.178165
\(865\) −11569.2 −0.454755
\(866\) −23993.1 −0.941476
\(867\) −30147.2 −1.18091
\(868\) 18378.3 0.718663
\(869\) −12152.6 −0.474394
\(870\) 7645.10 0.297923
\(871\) −23781.4 −0.925144
\(872\) −9690.31 −0.376325
\(873\) 15363.3 0.595613
\(874\) −889.278 −0.0344168
\(875\) −3474.01 −0.134221
\(876\) 2063.22 0.0795774
\(877\) −45757.4 −1.76182 −0.880912 0.473281i \(-0.843070\pi\)
−0.880912 + 0.473281i \(0.843070\pi\)
\(878\) −15530.8 −0.596969
\(879\) 28867.8 1.10772
\(880\) 865.458 0.0331529
\(881\) 37019.6 1.41569 0.707845 0.706367i \(-0.249667\pi\)
0.707845 + 0.706367i \(0.249667\pi\)
\(882\) −14059.6 −0.536747
\(883\) −9311.25 −0.354868 −0.177434 0.984133i \(-0.556780\pi\)
−0.177434 + 0.984133i \(0.556780\pi\)
\(884\) 17596.3 0.669490
\(885\) 172.540 0.00655354
\(886\) −18123.1 −0.687197
\(887\) 33041.8 1.25077 0.625387 0.780315i \(-0.284941\pi\)
0.625387 + 0.780315i \(0.284941\pi\)
\(888\) −5276.30 −0.199393
\(889\) 43911.4 1.65662
\(890\) 8796.72 0.331311
\(891\) 205.130 0.00771283
\(892\) 4440.37 0.166676
\(893\) 2131.92 0.0798903
\(894\) −6686.37 −0.250141
\(895\) 11738.5 0.438406
\(896\) 3557.39 0.132638
\(897\) −2772.04 −0.103184
\(898\) −21888.6 −0.813398
\(899\) 38767.2 1.43822
\(900\) −1637.12 −0.0606341
\(901\) −81885.4 −3.02774
\(902\) 6401.06 0.236288
\(903\) 5973.03 0.220122
\(904\) 5930.53 0.218193
\(905\) −21981.6 −0.807395
\(906\) 9889.25 0.362636
\(907\) −41359.1 −1.51412 −0.757060 0.653346i \(-0.773365\pi\)
−0.757060 + 0.653346i \(0.773365\pi\)
\(908\) −19671.6 −0.718971
\(909\) 11270.4 0.411238
\(910\) −10274.3 −0.374273
\(911\) −16960.3 −0.616818 −0.308409 0.951254i \(-0.599797\pi\)
−0.308409 + 0.951254i \(0.599797\pi\)
\(912\) 1008.42 0.0366142
\(913\) 8920.71 0.323365
\(914\) 21869.8 0.791452
\(915\) 1802.53 0.0651256
\(916\) −5562.50 −0.200644
\(917\) −65279.7 −2.35085
\(918\) 33651.7 1.20988
\(919\) 3085.38 0.110748 0.0553739 0.998466i \(-0.482365\pi\)
0.0553739 + 0.998466i \(0.482365\pi\)
\(920\) −920.000 −0.0329690
\(921\) 4893.63 0.175082
\(922\) 5304.51 0.189474
\(923\) 5294.46 0.188807
\(924\) 3920.84 0.139596
\(925\) 5057.51 0.179773
\(926\) 1415.40 0.0502299
\(927\) −33422.6 −1.18419
\(928\) 7503.97 0.265442
\(929\) −42292.0 −1.49360 −0.746801 0.665048i \(-0.768411\pi\)
−0.746801 + 0.665048i \(0.768411\pi\)
\(930\) 5389.71 0.190038
\(931\) −8301.22 −0.292225
\(932\) −13638.4 −0.479334
\(933\) 24257.3 0.851178
\(934\) −21342.1 −0.747682
\(935\) 6436.64 0.225134
\(936\) −4841.72 −0.169078
\(937\) 15746.4 0.549000 0.274500 0.961587i \(-0.411488\pi\)
0.274500 + 0.961587i \(0.411488\pi\)
\(938\) −35756.8 −1.24467
\(939\) 8243.79 0.286502
\(940\) 2205.57 0.0765297
\(941\) 52033.4 1.80259 0.901296 0.433204i \(-0.142617\pi\)
0.901296 + 0.433204i \(0.142617\pi\)
\(942\) 17978.7 0.621843
\(943\) −6804.46 −0.234977
\(944\) 169.355 0.00583903
\(945\) −19648.7 −0.676374
\(946\) 1426.32 0.0490208
\(947\) −17293.2 −0.593405 −0.296702 0.954970i \(-0.595887\pi\)
−0.296702 + 0.954970i \(0.595887\pi\)
\(948\) −14649.2 −0.501883
\(949\) −5848.88 −0.200066
\(950\) −966.607 −0.0330114
\(951\) 31417.5 1.07127
\(952\) 26457.2 0.900717
\(953\) 8989.54 0.305561 0.152781 0.988260i \(-0.451177\pi\)
0.152781 + 0.988260i \(0.451177\pi\)
\(954\) 22531.2 0.764648
\(955\) −20765.7 −0.703625
\(956\) 8225.39 0.278272
\(957\) 8270.64 0.279365
\(958\) 3902.34 0.131606
\(959\) −17163.5 −0.577933
\(960\) 1043.26 0.0350740
\(961\) −2460.53 −0.0825931
\(962\) 14957.4 0.501296
\(963\) −4705.41 −0.157456
\(964\) −7828.13 −0.261543
\(965\) 5102.62 0.170217
\(966\) −4167.94 −0.138821
\(967\) 23285.3 0.774358 0.387179 0.922005i \(-0.373450\pi\)
0.387179 + 0.922005i \(0.373450\pi\)
\(968\) −9711.73 −0.322466
\(969\) 7499.89 0.248639
\(970\) 9384.37 0.310633
\(971\) 44316.5 1.46466 0.732330 0.680950i \(-0.238433\pi\)
0.732330 + 0.680950i \(0.238433\pi\)
\(972\) −15023.7 −0.495768
\(973\) 41959.1 1.38247
\(974\) 34142.4 1.12320
\(975\) −3013.09 −0.0989703
\(976\) 1769.26 0.0580252
\(977\) 761.665 0.0249415 0.0124707 0.999922i \(-0.496030\pi\)
0.0124707 + 0.999922i \(0.496030\pi\)
\(978\) −8237.13 −0.269319
\(979\) 9516.49 0.310673
\(980\) −8588.01 −0.279932
\(981\) 19830.3 0.645394
\(982\) 33959.8 1.10356
\(983\) −17423.3 −0.565328 −0.282664 0.959219i \(-0.591218\pi\)
−0.282664 + 0.959219i \(0.591218\pi\)
\(984\) 7716.10 0.249980
\(985\) 1993.21 0.0644762
\(986\) 55808.9 1.80255
\(987\) 9992.06 0.322240
\(988\) −2858.70 −0.0920521
\(989\) −1516.21 −0.0487489
\(990\) −1771.07 −0.0568570
\(991\) −33873.1 −1.08579 −0.542894 0.839801i \(-0.682671\pi\)
−0.542894 + 0.839801i \(0.682671\pi\)
\(992\) 5290.22 0.169319
\(993\) −9375.71 −0.299626
\(994\) 7960.55 0.254017
\(995\) −20657.0 −0.658162
\(996\) 10753.4 0.342103
\(997\) −31163.3 −0.989921 −0.494960 0.868915i \(-0.664817\pi\)
−0.494960 + 0.868915i \(0.664817\pi\)
\(998\) −5577.66 −0.176912
\(999\) 28604.9 0.905925
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 230.4.a.i.1.2 4
3.2 odd 2 2070.4.a.bi.1.4 4
4.3 odd 2 1840.4.a.l.1.3 4
5.2 odd 4 1150.4.b.m.599.7 8
5.3 odd 4 1150.4.b.m.599.2 8
5.4 even 2 1150.4.a.o.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.2 4 1.1 even 1 trivial
1150.4.a.o.1.3 4 5.4 even 2
1150.4.b.m.599.2 8 5.3 odd 4
1150.4.b.m.599.7 8 5.2 odd 4
1840.4.a.l.1.3 4 4.3 odd 2
2070.4.a.bi.1.4 4 3.2 odd 2