Properties

Label 230.4.a.i
Level $230$
Weight $4$
Character orbit 230.a
Self dual yes
Analytic conductor $13.570$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,4,Mod(1,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.5704393013\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_1 + 1) q^{3} + 4 q^{4} - 5 q^{5} + ( - 2 \beta_1 + 2) q^{6} + ( - 2 \beta_{2} - \beta_1 + 6) q^{7} + 8 q^{8} + (\beta_{3} + \beta_{2} - 2 \beta_1 + 16) q^{9} - 10 q^{10} + (3 \beta_{2} + \beta_1 + 24) q^{11}+ \cdots + (11 \beta_{3} + 38 \beta_{2} + \cdots + 510) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 4 q^{3} + 16 q^{4} - 20 q^{5} + 8 q^{6} + 26 q^{7} + 32 q^{8} + 64 q^{9} - 40 q^{10} + 93 q^{11} + 16 q^{12} + 32 q^{13} + 52 q^{14} - 20 q^{15} + 64 q^{16} + 108 q^{17} + 128 q^{18} + 185 q^{19}+ \cdots + 2013 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 84x^{2} - 11x + 1242 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 50\nu - 96 ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 13\nu^{2} + 50\nu - 534 ) / 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 42 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{3} + 13\beta_{2} + 50\beta _1 + 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.16920
4.26018
−4.50148
−7.92791
2.00000 −7.16920 4.00000 −5.00000 −14.3384 −25.3945 8.00000 24.3974 −10.0000
1.2 2.00000 −3.26018 4.00000 −5.00000 −6.52037 27.7921 8.00000 −16.3712 −10.0000
1.3 2.00000 5.50148 4.00000 −5.00000 11.0030 0.0500526 8.00000 3.26627 −10.0000
1.4 2.00000 8.92791 4.00000 −5.00000 17.8558 23.5524 8.00000 52.7075 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.4.a.i 4
3.b odd 2 1 2070.4.a.bi 4
4.b odd 2 1 1840.4.a.l 4
5.b even 2 1 1150.4.a.o 4
5.c odd 4 2 1150.4.b.m 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.4.a.i 4 1.a even 1 1 trivial
1150.4.a.o 4 5.b even 2 1
1150.4.b.m 8 5.c odd 4 2
1840.4.a.l 4 4.b odd 2 1
2070.4.a.bi 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{3} - 78T_{3}^{2} + 175T_{3} + 1148 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(230))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 1148 \) Copy content Toggle raw display
$5$ \( (T + 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 26 T^{3} + \cdots - 832 \) Copy content Toggle raw display
$11$ \( T^{4} - 93 T^{3} + \cdots - 41700 \) Copy content Toggle raw display
$13$ \( T^{4} - 32 T^{3} + \cdots + 682562 \) Copy content Toggle raw display
$17$ \( T^{4} - 108 T^{3} + \cdots + 96120 \) Copy content Toggle raw display
$19$ \( T^{4} - 185 T^{3} + \cdots + 1404820 \) Copy content Toggle raw display
$23$ \( (T - 23)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 1735042500 \) Copy content Toggle raw display
$31$ \( T^{4} + 211 T^{3} + \cdots - 311259365 \) Copy content Toggle raw display
$37$ \( T^{4} - 5 T^{3} + \cdots - 14187104 \) Copy content Toggle raw display
$41$ \( T^{4} + 369 T^{3} + \cdots - 114199911 \) Copy content Toggle raw display
$43$ \( T^{4} + 100 T^{3} + \cdots + 93158400 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 9732540576 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 8104397736 \) Copy content Toggle raw display
$59$ \( T^{4} + 33 T^{3} + \cdots - 623752800 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 5277943032 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 49731103520 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 3703975749 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 80640087688 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 498954065920 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 424764340752 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 92383027200 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 734679597128 \) Copy content Toggle raw display
show more
show less